
Switch Code Generation Using Program Synthesis
Xiangyu Gao

1
, Taegyun Kim

1
, Michael D. Wong

1
, Divya Raghunathan

2
, Aatish Kishan Varma

1
,

Pravein Govindan Kannan
3
, Anirudh Sivaraman

1
, Srinivas Narayana

4
, Aarti Gupta

2

1New York University 2Princeton University 3National University of Singapore 4Rutgers University

ABSTRACT
Writing packet-processing programs for programmable switch

pipelines is challenging because of their all-or-nothing nature: a

program either runs at line rate if it can fit within pipeline resources,

or does not run at all. It is the compiler’s responsibility to fit pro-

grams into pipeline resources. However, switch compilers, which

use rewrite rules to generate switch machine code, often reject pro-

grams because the rules fail to transform programs into a form that

can be mapped to a pipeline’s limited resources—even if a mapping

actually exists.

This paper presents a compiler, Chipmunk, which formulates

code generation as a program synthesis problem. Chipmunk uses a

program synthesis engine, SKETCH, to transform high-level pro-

grams down to switch machine code. However, naively formulating

code generation as program synthesis can lead to long compile

times. Hence, we develop a new domain-specific synthesis tech-

nique, slicing, which reduces compile times by 1–387× and 51× on

average.

Using a switch hardware simulator, we show that Chipmunk com-

piles many programs that a previous rule-based compiler, Domino,

rejects. Chipmunk also produces machine code with fewer pipeline

stages than Domino. A Chipmunk backend for the Tofino pro-

grammable switch shows that program synthesis can produce ma-

chine code for high-speed switches.

CCS CONCEPTS
• Networks→ Programmable networks;

KEYWORDS
Programmable switches; program synthesis; code generation; slic-

ing; packet processing pipelines

ACM Reference Format:
Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya Raghunathan, Aatish

Kishan Varma, Pravein Govindan Kannan, Anirudh Sivaraman, Srinivas

Narayana, Aarti Gupta. 2020. Switch Code Generation Using Program Syn-

thesis. In Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols
for computer communication (SIGCOMM ’20), August 10–14, 2020, Virtual
Event, NY, USA. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/

3387514.3405852

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00

https://doi.org/10.1145/3387514.3405852

1 INTRODUCTION
There has been a recent flurry of research on programming lan-

guages and hardware designs for high-speed programmable switch

pipelines [8, 15, 23, 38–40, 73]. Today, it is possible to specify packet

processing for line-rate switches at a high level of abstraction using

languages like P4, making it easy for researchers, network opera-

tors, and equipment vendors to start programming switches.

However, writing optimized programs for line-rate switches is

much more challenging than sample programs and tutorials [20]

might suggest. A realistic switch program [22, 54, 55]must fit within

highly constrained switch resource budgets to run successfully. Ex-

amples of resources include pipeline stages, arithmetic logic units

(ALUs), SRAM memory for control plane rules, and containers for

packet headers. To make things worse, packet-processing pipelines

have an all-or-nothing characteristic: programs that can be accom-

modated within the switch’s resources run at the line rate of the

switch pipeline; otherwise they cannot run at all. Unlike processors,

there is no middle ground where complex programs can run with

slightly degraded performance. This forces developers to grapple

with low-level details of the hardware such as the configurations

of the available ALUs, sequencing of stages, and the usage of the

available stage memory (both SRAM and TCAM), to squeeze their

programs into the pipeline’s resources.

The difficulty of writing optimized programs can be addressed

using compilers. Today’s switch compilers [17, 69] are structured

around rewrite rules [31] that operate on small program fragments

at a time. These rules repeatedly transform the program into simpler

forms until it can be easily mapped to machine code. However, rule-

based compilers can spuriously reject many programs as they are

unable to rewrite them to a form that can fit within the limited

switch resources, even when there exist ways to fit those programs

into the switch. §3 provides an example.

Motivated by these drawbacks of rule-based compilers and in-

spired by the success of program synthesis in other domains [43,

48, 62, 63, 67], a recent workshop paper [46] observed that we can

leverage program synthesis, i.e., automatically generating program

implementations that satisfy a specification, to produce fast packet-

processing code that fits within resource limits. The workshop

paper observed that synthesis can be used to transform a high-level

program (e.g., in C, P4-16 [16], or Domino [69]) into low-level ma-

chine code (e.g., ALU opcodes in a switch pipeline) by treating the

machine code as the program to be synthesized and the high-level

program as the specification. The current paper builds on the vision

in that workshop paper and makes two main research contributions

in designing a switch compiler, Chipmunk.

Domain-specific synthesis techniques (§4). Synthesis is a combina-

torial search problem over a space of implementations that may

satisfy a specification. Hence, a synthesis-based compiler can take

https://doi.org/10.1145/3387514.3405852
https://doi.org/10.1145/3387514.3405852
https://doi.org/10.1145/3387514.3405852

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiangyu Gao et al.

much longer to generate code than a rule-based compiler. We devel-

oped a new technique, slicing, to speed up synthesis-based compila-

tion for pipelines. In slicing, we decompose the synthesis problem

for switch pipeline code generation into a collection of indepen-

dently synthesizable sub-problems called slices. In each slice, Chip-

munk synthesizes a sub-implementation that has the same behavior

as the specification, but just on a single packet field or state variable
from the specification. These sub-implementations can be directly

“stacked” on top of each other to form the full pipelined imple-

mentation. Each slice presents a simpler synthesis problem—since

the implementation must only respect the specification for one

variable—and hence can be synthesized with fewer pipeline stages

and ALUs than the original specification. The reduction in stages

and ALUs leads to a much smaller search space and time for syn-

thesis. Beyond slicing, we also adapted several techniques from

program synthesis to the context of packet processing (§4.5).

Retargetable code generation using a pipeline description lan-
guage (§5).Wedesigned the Chipmunk compiler to target two back-

ends, a switch pipeline simulator and Barefoot’s Tofino switch [23],

as well as subsets of their full capabilities. Our experience made

it clear to us that it would be useful to share the same underly-

ing program synthesis technology across several backend targets.

That is, our compiler should be retargetable: it should be able to

generate machine code for different switch pipelines with different

instruction sets driven solely by a declarative specification of the

hardware’s capabilities [10, 41]. To enable this, we developed a

declarative domain-specific language (DSL) to specify the capabili-

ties of a pipeline’s ALUs and the interconnect between them. We

call this DSL the pipeline description language. Chipmunk takes a

description of the hardware written in this language, automatically

formulates a synthesis problem for an off-the-shelf synthesis en-

gine, SKETCH [72], solves it, and translates the results of synthesis

into backend-specific machine code. For the Tofino backend, which

doesn’t support direct programming in assembly language, we used

compiler pragmas to gain the low-level control over hardware re-

sources required for code generation (§6).

We evaluated Chipmunk on both the simulator and Tofino back-

ends using 14 benchmarks drawn from a variety of sources [58, 59,

69]. Our primary findings are that:

(1) Chipmunk successfully compiles many programs that a rule-

based compiler, Domino [69], rejects.

(2) Chipmunk produces machine code with fewer pipeline

stages—a highly constrained switch resource—relative to

Domino.

(3) Slicing speeds up synthesis by 1–387× (average: 51×).

(4) Although Chipmunk is slower than Domino, Chipmunk’s

compile times are within 5 minutes on 12 out of 14 bench-

marks, and within 2 hours for the rest.

(5) Chipmunk generates Tofino machine code for 10 out of 14

benchmarks. We believe the other 4 benchmarks are beyond

the capabilities of Tofino ALUs (§7.2).

We have open sourced Chipmunk along with instructions to repli-

cate this paper’s results at https://chipmunk-project.github.io/. This

work does not raise any ethical issues.

2 BACKGROUND

Programming languages for packet processing. Several languages
now exist for packet processing, e.g., P4-14 [27], P4-16 [16],

POF [73], and Domino [69]. This paper uses Domino as the language

in which the input program is specified by the programmer. Domino

is well-suited to expressing packet processing with an algorithmic

flavor, e.g., maintaining sketches for measurement or implement-

ing the RCP [76] protocol. Figure 1 shows an example Domino

program that samples every 11
th
packet going through a pipeline.

Domino provides transactional semantics: operations in a Domino

program execute from start to finish atomically, as though packets

are being processed by the target exactly one packet at a time. This

frees the programmer from having to deal with concurrency issues,

delegating that to the compiler instead. The same transactional

semantics are also supported by P4-16’s @atomic construct [21].

P4-16’s @atomic construct was influenced by Domino [4]; hence,

we expect to also be able to support P4-16 @atomic in the frontend.

Packet-processing pipelines. A programmable switch consists of a

programmable parser to parse packet headers, one or more pro-

grammable match-action ingress pipelines to manipulate headers,

a packet scheduler, and one or more programmable match-action

egress pipelines for additional header manipulations. We focus on

the pipelines because that is where packet manipulations primarily

occur. We consider a pipeline architecture for packet-processing

based on RMT [39] and Banzai [1], which extends RMT with state-

ful computation. This architecture is now commonly known as the

Protocol Independent Switch Architecture (PISA) [24] and is seen

in many high-speed programmable switches [7, 8, 14, 23].

In PISA, an incoming packet first enters the parser. After parsing,

the parsed packet headers are deposited in a packet header vector
(PHV): a vector of containers each of which stores a single header

field (e.g., IP TTL). This PHV is passed through the ingress and

egress pipelines. Each pipeline stage contains multiple match-action

tables that operate concurrently on PHV containers. Each match-

action table identifies the rule of interest for the current packet

using the match unit (e.g., SSH packets can be matched using a rule

specifying TCP port 22) and modifies the packet using the action
unit (e.g., adding 1 to a packet field) tied to that rule. The pipeline

can maintain a small amount of action-unit-local state to perform

the action, e.g., maintain a count of all SSH packets.

The PISA pipeline is assumed to be feed-forward: packets can
only flow from an earlier stage to a later one, but not in reverse.

This means that computations in a later stage can depend on com-

putations in earlier ones, but not vice versa. In particular, a piece of

state stored in a pipeline stage can be read, modified, and written

only once by a packet as it passes through the pipeline. Switches can
recirculate packets back into the pipeline to enable backward flow,

but recirculation greatly degrades packet-processing throughput

and we do not consider it here.

We refer to the action units in packet-processing pipelines as

Arithmetic Logic Units (ALUs). In this paper, we only focus on

the pipeline’s ALUs (not the match units) because the ALUs are

where per-packet computation occurs—and hence the target of code

generation. We further assume that the ALUs execute on all packets

going through the pipeline. It is straightforward to implement use

https://chipmunk-project.github.io/

Switch Code Generation Using Program Synthesis SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Stateful ALU
State

storage
PHV

Input
Mux

PISA machine model for programmable packet-processing pipelines

PHV
Container

Stateless ALU

Stateless ALU

PHV

Stateful ALU
State

storage

Output
Mux

PHV
Container

PHVOutput
Mux

PHV
Container

PHV
Container

PHV
Container

PHV
Container

Stateful ALU
State

storage

Stateless ALU

Stateless ALU

Stateful ALU
State

storage

Input
Mux

if (count == 10):
count = 0
pkt.sample = 1

else:
count++
pkt.sample = 0

State
Variable

Packet
Field

Domino/
Chipmunk
compiler

Figure 1: Program as a packet transaction in Domino along with a 2-by-2 pipelined grid (i.e., 2 stages, 2 stateful + 2 stateless
ALUs per stage) showing the PISA machine model. Input muxes are used to determine which PHV container to use as an ALU
operand. Output muxes are used to determine which ALU to use to update a container.
cases where the ALUs only execute on a subset of the packets

because match rules can be added to the corresponding match-

action tables to support such use cases. Hence, the entire pipeline

can be abstracted out as a 2D grid of ALUs (Figure 1).

ALUs must process packets at line rate. Hence, an ALU should

be able to process a new packet every clock cycle (~1 ns). ALUs

can be stateless, i.e., operating only on PHV containers; or stateful,
i.e., operating both on ALU-local state and PHV containers. For

stateless ALUs, the ALU should be able to update a new PHV con-

tainer every cycle. For stateful ALUs, the entire read-modify-write

operation on the state that the ALU operates on must complete

within a cycle. This guarantees state consistency even if packets

in consecutive cycles access the same state. Each ALU has a set

of input multiplexers (muxes), one per operand. These muxes are

used to determine which PHV containers are used as ALU operands.

Each ALU provides certain operations (e.g., addition) and may take

immediate operands. Each PHV container is fed by an output mux

to determine which stateful/stateless ALU’s output updates it.

Compiling programs to pipelines. A compiler for a pipeline (e.g.,

Domino [69]) takes a packet-processing program, written in a high-

level language, and turns it into low-level machine code represent-

ing pipeline configurations, e.g., ALU opcodes, allocation of packet

fields to PHV containers, and configurations of muxes (Figure 1).

Compiling programs to pipelines is all-or-nothing: successfully
compiled programs can run at the pipeline’s line rate, but a program

that is rejected by the compiler can’t run at all. Programs can be

rejected for two reasons. The first reason is violating resource limits:

the machine code generated by the compiler might consume more

resources (e.g., stages, ALUs, rule/table memory) than available.

The second reason is violating computational limits: the compiler

might be unable to find a way to map computations in the program

to the hardware’s ALUs, even with infinite ALUs.

This places a significant responsibility on the compiler, which

should ideally be able to find some machine code corresponding to

the given high-level program—provided the program is within the

resource and computational limits of the pipeline: the program’s

computations belong to the finite space of computations possible

using a single pass through the pipeline’s ALUs without recircu-

lation. As an example of a program that exceeds these limits, if

the pipeline only supports increment operations on state (but no

multiply), and the program requires an exponentially weighted

moving average filter over queueing delays, it is impossible to run

the program using the pipeline.

3 THE CASE FOR PROGRAM SYNTHESIS

Drawbacks of rule-based compilers. Compilers for packet-

processing pipelines often reject programs spuriously: a

semantically-equivalent version of the same program will be

accepted by the same compiler. We have observed this problem

with both commercial [19] and academic compilers [6].

We illustrate the problem of spurious program rejections in the

context of the Domino compiler [69] using a simple example. While

this example is simplified for illustration, we have observed similar

spurious program rejections with more complex examples as well.

Figure 2 shows two Domino programs written to target a PISA

pipeline. The two programs are semantically equivalent, i.e., given

the same input packets and the same initial state variables, they

will both produce the same trace of output packets and state values

at run time. However, the Domino compiler exhibits a butterfly

effect or a false positive compilation result: it successfully compiles

the first program, but rejects the second one even though both of

them have the same semantics.

To understand why, we look at the intermediate representation

constructed by the Domino compiler. This representation is akin to

a directed acyclic graph (DAG) of computations, but additionally

groups together stateful computations that must finish atomically

within one clock cycle. Figure 3 shows the DAGs for both versions

of the program. The shaded nodes show stateful computations,

while the unshaded nodes show stateless computations [69]. The

DAGs differ in the complexity of stateful computations: the circled

stateful computation of version 2 is more involved, and cannot

be executed atomically by the available stateful ALU, while the

stateful computations of version 1 can be. This is because the ALU

considered here (the Read/Write ALU [69]) can only handle the

atomic update of one state variable, but not the atomic update of

two variables as required by version 2. Essentially, the compiler is

running into a computational limit.

This difference in DAGs for 2 semantically equivalent programs

occurs because Domino’s compiler passes are program rewrite

rules that repeatedly transform the program in an attempt to find

a simpler version of it (i.e., the DAG representation) that readily

maps to switch ALUs. However, these rewrite rules are incomplete:
they do not find a semantically-equivalent version of the DAG that

can map all nodes to the available ALU type (i.e., version 1’s DAG)

when given the version 2 program. In effect, the compiler’s rules

do not fully explore the search space of machine code programs

that could implement the high-level program.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiangyu Gao et al.

Version 1 Version 2
if (filter1!=0 && filter2!=0 && filter3!=0){
 pkt.member=1;
}
filter1=1;
filter2=1;
filter3=1;
}

if (filter1!=0 && filter2!=0 && filter3!=0) {
 pkt.member=1;
 filter1=1;
 filter2=1;
}else{
 filter1=1;
 filter2=1;
}
filter3=1;
}

Move state
variable
assignment
to if-else
statement

State
Variables

Packet
Field

Figure 2: Two semantically equivalent versions of a Domino
program [69]. Version 1 compiles; version 2 fails to.

Version 1

Version 2

pkt.filter1 = filter1;
pkt.filter2 = filter2;

pkt.tmp = pkt.filter1 && pkt.filter2 && pkt.filter3;
filter1 = 1;
filter2 = 1;

pkt.member = pkt.tmp ?
1 : pkt.member;

pkt.filter2 = filter2;
filter2 = 1;

pkt.tmp = pkt.filter1 && pkt.filter2 && pkt.filter3;

pkt.member = pkt.tmp ?
1 : pkt.member;

pkt.filter1 = filter1;
filter1 = 1;

pkt.filter3 = filter3;
filter3 = 1;

pkt.filter3 = filter3;
filter3 = 1;

Figure 3: Simplified Domino DAGs for both versions. State-
less computations are unshaded; stateful are shaded. The cir-
cled node shows the large amount of atomic stateful compu-
tation in version 2.

Although the specific situation in Figure 3 could be fixed by a

compiler developer through the addition of another rewrite rule,

similar situations will continue to emerge in the future. In fact,

rule-based compilers and programs can be thought of as two sides

of an arms race, with compilers getting more complex over time to

incorporate more rewrite rules that simplify more complex program

patterns. By contrast, as we next discuss, by exhaustively searching

the space of machine code, program synthesis has the potential to

provide a simpler and more future-proof compiler design.

The case for program synthesis. To address the incompleteness of

rule-based compilation, we first observe that the search for ma-

chine code for a given high-level program can be thought of as

a combinatorial search problem called program synthesis. In pro-

gram synthesis, we are looking for a program implementation that

is semantically-equivalent to a program specification: on all legal

inputs, the outputs of the specification and implementation agree.

In our context, implementations are drawn from the set of all ma-

chine code programs that can be implemented on a 2D ALU grid

of bounded size. The specification is the high-level language pro-

gram that must be compiled. The benefit of the program synthesis

approach is that synthesis engines can search a family of imple-

mentations using efficient algorithms [53, 72] (see Appendix B). If

int spec(int x) {
return x*x*9 +

3*x;
}

int sketch1(int x)
implements spec {
return x * x*??(4) + x
+ x * ??(2);
}

int sketch2(int x)
implements spec {
return x * ??(2);

}

Specification Feasible sketch with
holes set to 9 and 2

Infeasible sketch; no
possible hole assignment

Figure 4: Synthesis in SKETCH. ??(b) is a hole with a value
in [0, 2b − 1]

at least some implementations meet the specification, the synthesis

engine is far more likely to find it than a rule-based compiler. Hence,

synthesis greatly reduces butterfly effects similar to Figure 2.

However, without domain-specific techniques to prune the

search space of implementations, synthesis can quickly become

intractable in practice. Thus our goal is to leverage synthesis for

compilation because of its ability to search the machine code space,

while keeping compilation times reasonable using domain-specific

techniques to prune the search space. In this paper, we aim for com-

pilation times of an hour, although most of our programs compile

in a few minutes (§7.1). While an hour seems excessive, we believe

that it is better than the alternative of having developers tweak

programs manually, which requires low-level hardware expertise, is

error prone, and may take even longer. Further, there must be some

price to pay for higher quality code; other compiler techniques (e.g.,

link-time optimization [11]) exhibit a similar tradeoff.

4 CODE GENERATION AS SYNTHESIS
Chipmunk takes as inputs: (1) a packet transaction and (2) a speci-

fication of the pipeline’s capabilities. It produces machine code for

that pipeline, which consumes a small number of resources (ALUs

and pipeline stages). We first describe how we produce machine

code given a fixed pipeline depth (stages) and width (ALUs per

stage) (§4.1–§4.5). We then show how to use this to find code with

small depth and width (§4.6).

4.1 Code Generation Using SKETCH
We briefly describe SKETCH, the program synthesis engine we

use in this paper. SKETCH takes two inputs: a specification and a

sketch, a partial program with holes representing unknown values

in a finite range of integers. Sketches constrain the synthesis search

space by only considering for synthesis those programs in which

each sketch hole is filled with an integer belonging to the hole’s

range. Sketches encode human insight into the shape of synthesized

programs. SKETCH then fills in all holes with integers so that the

completed sketch meets the specification, assuming it is possible

to meet the specification (Figure 4), or says that it is impossible to

do so. Appendix B describes SKETCH’s internals. To build a code

generator using SKETCH, we need to determine an appropriate set

of holes, the sketch, and the specification.

Holes. The code generator needs to ultimately choose the right

value of low-level programmable hardware knobs (Table 1), e.g.,

which inputs to wire to each ALU (the input muxes), what operation

each performs (ALU opcodes), which PHV container is used for

the outputs (output muxes), which packet field is allocated to each

Switch Code Generation Using Program Synthesis SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Programmable knob / SKETCH hole Hole bit width
ALU opcode (e.g., +,-, *, /) loд2(|opcodes |)
Input mux control: which PHV feeds an ALU loд2(|PHV s |)
Output mux control: which ALU feeds a PHV loд2(|ALU s |)
Indicator bit to track if a field is allocated to a PHV

container

|f ields | ∗ |PHV |

Indicator bit to track if a state variable is allocated

to a stateful ALU

|state_vars | ∗

|num_staдes | ∗

|alus_per_staдe |
Immediates/constants in instructions constant bit width

Table 1: Programmable knobs and their hole bit width

container, etc. Our goal is to get SKETCH to make these choices.

Hence, we encode these programmable knobs as SKETCH holes.

Sketch. We use a sketch to represent the space of valid pipeline con-

figurations to be considered for implementing packet-processing

programs. This sketch captures all the possible computations sup-

ported by the pipeline as a function of the holes. First, the sketch

models the effect of each stateful and stateless ALU on PHV con-

tainers and ALU-local state, as a function of holes corresponding to

the ALU opcode, input mux controls, immediate operands, and local

state variable(s). Second, the sketch models the pipeline: the flow

of PHVs from stage to stage, as a function of holes corresponding

to the input/output mux controls and field to PHV allocations. In

effect, our pipeline sketch is a programmatic representation of the

2D grid of ALUs in Figure 1; see Appendix A for an example.

4.2 Packet Transactions as Specifications
We now show how we encode specifications. We use the terms

packet (state) vector to refer to a vector, every dimension of which

corresponds to a single packet field (state variable) from the spec-

ification, i.e., the packet transaction in Figure 1. We use the term

state+packet vector to represent the concatenation of the state and

packet vectors. Our goal is to synthesize a pipeline implementation

that respects the packet transaction specification on an arbitrary

input packet trace: on any sequence of packet vectors and arbi-

trary initial state vector, the output sequence of packet vectors and

final state vector must be the same for the specification and the

implementation. We call this problem trace-based synthesis.
However, trace-based synthesis appears daunting since packet

traces can be infinitely long, while SKETCH is designed to work

with finite inputs. But we can reduce trace-based synthesis to a

simpler finite problem we call packet-based synthesis, where our
goal is to synthesize a pipeline implementation such that on any

arbitrary single packet vector and arbitrary single previous state
vector, the updated state+packet vector after processing that packet

must be the same for the specification and the implementation.

To perform this reduction, we need to establish that a solution to

packet-based synthesis is also a solution to trace-based synthesis,

which follows by induction on the length of the packet sequence.

We note that packet-based synthesis is a stronger requirement

than trace-based synthesis because it requires agreement on any

possible previous state vector, even if such a state vector might

never occur in a state sequence starting with an arbitrary initial

state vector. This reduction is also similar to a classic technique

used in hardware verification [49], where a sequential equivalence-

checking problem of matching a sequence of outputs between a

specification and an implementation is reduced to a combinational

equivalence-checking problem, which requires both the outputs and

the states to match at every time step. This reduction is practically

significant because synthesis tools can deal with the finite input

space of a single state vector and a single packet vector.

We convert the packet-processing program written as a packet

transaction in Domino into a SKETCH specification that takes as

input a state+packet vector and outputs an updated state+packet

vector. To convert the Domino program into a SKETCH specifica-

tion, we added a pass to the Domino compiler [6]. This is relatively

straightforward because both Domino and SKETCH have a very

similar C-like syntax. Replacing Domino with P4-16 @atomic as

the input language for Chipmunk would similarly need a p4c [17]

compiler pass.

4.3 The Slicing Technique
While packet-based synthesis is simpler than trace-based synthesis,

it is still too slow on several benchmarks (Table 3). To speed up

synthesis further, we developed a technique called slicing. We start

with a simplified version of slicing that only works for stateless

and deterministic packet transactions. We then refine it to handle

state and randomness.

To motivate slicing, observe that in packet-based synthesis, we

require the specification and implementation to agree on the entire
updated state+packet vector. Instead of requiring agreement on

the entire vector, we factorize the requirement into a collection

of simpler requirements or slices. Each slice is a simpler synthesis

problem that synthesizes a pipelined implementation such that

the implementation and the specification agree only on a single

vector dimension of the updated state+packet vector (e.g., only

pkt.sample or only count in Figure 1). Once we have successfully

synthesized each slice, wemerge together the slice implementations

by stacking the resulting pipeline implementations on top of each

other to form the final hardware implementation.

Slicing has two main advantages over packet-based synthesis.

First, each slice can be synthesized in parallel because each slice

implementation runs on an independent sub-grid of the pipeline

with no overlap between the sub-grids. Second, because each slice’s

implementation only satisfies a subset of the specification, i.e., one

dimension instead of all dimensions of the state+packet vector, it

can be synthesized using a sub-grid with smaller size than would

be needed for the original specification. A smaller grid requires

fewer holes to be synthesized (Table 1), reducing the synthesis time

(Table 3) for any one slice relative to the original specification.

Handling state modifications. When the packet transaction modi-

fies state, the above slicing algorithm is no longer correct. To see

why, consider the specification “count++; pkt.f = count;”. This
specification sets a packet field, pkt.f, to the most recent value of

a switch counter, count, which increments on every packet. This

problem will be factorized into two slices: one each for pkt.f and

count. In the first slice, we require an implementation that sets

pkt.f to the previous count + 1. In the second slice, we require an

implementation that sets count to the previous count + 1.

Note, however, the first slice does not require count itself to be

updated to its correct final value. This means that the first slice

can produce implementations that simply set pkt.f to the previous

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiangyu Gao et al.

count + 1, without actually ever updating count! The result is that
when a trace of multiple packets has passed through the pipeline,

pkt.f will always be set to 1, i.e., the initial value of count (0) + 1.

This is because count is never updated in the first slice. However,

a correct implementation should set pkt.f to 1, 2, 3, . . . , over

successive packets.

More generally, for any slice S , suppose there is a state variable
i such that S’s packet field or state variable depends on i (e.g.,
pkt.f depends on count). Then we say i influences S . Then as

part of the slice S , we should also require that i be updated in the

implementation to match up with how the specification updates

i . Otherwise, i may not be updated and S’s packet field or state

variable cannot make use of the updated i for its own computation.

Hence, for each slice, we additionally assert that the specification

and implementation also agree on any state variables that influ-

ence that slice’s packet field or state variable. §4.4 proves that this

additional assert produces the correct behavior of all slices in the

presence of state—as long as state modifications complete within a

clock cycle as described in §2. In our example above, this additional

assert ensures that count is also set to previous count + 1 in the

first slice, in addition to pkt.f being set to previous count + 1.

Non-determinism. The use of randomness (e.g., hashing) within a

packet transaction can result in the merged implementation (after

slicing) differing in behavior from the packet transaction. This is

because when a random-number-generating computation is dupli-

cated in two or more slices, we cannot guarantee that the random

numbers generated in each slice will be identical. This can be fixed

by either seeding the random number generators in all slices to the

same value from the control plane or precomputing such random

numbers and storing them in packet fields before executing the

packet transaction. We follow the second approach in this paper.

The cost of slicing. Slicing does not exploit opportunities to share

computations between different slices. For instance, in our example,

the update to count is duplicated across the two slices. Thus slicing
requires additional ALUs and PHV containers for these redundant

computations. In our evaluations, we find that programs do not use

too many containers/ALUs in the first place (< 10) and using slicing

adds at most 3 containers and ALUs per stage (Table 3). For context,

RMT has about ∼200 ALUs/PHV containers per stage [39]. This is

a reasonable trade-off for faster compilation.

4.4 Correctness of slicing
We now prove the correctness of the slicing technique. We first

introduce some notation before proving correctness.

Definition 4.1. Spec denotes the packet transaction specifica-

tion for a single packet. It is a function with inputs comprising a

packet vector ®p and a state vector ®s; and with outputs comprising

an updated packet vector and an updated state vector.

Individual fields in the output vector of the function can be ac-

cessed bymember name ormember index. For example, Spec(®p, ®s).m
denotes the memberm of the output of the function Spec on in-

puts ®p and ®s and Spec(®p, ®s)[i] denotes the ith member in the output

vector of the function.

Definition 4.2. Spec* denotes the packet transaction specifica-

tion for a sequence of packets. It is a function with inputs com-

prising a sequence of n packets { ®pn }, and an initial state vector ®s0;
and with outputs comprising a final packet vector and a final state

vector after the nth packet is processed by the Spec function. It is
defined inductively as follows:

Spec
∗({®p1}, ®s0) = Spec(®p1, ®s0)

Spec
∗({®pn }, ®s0) = Spec(®pn , Spec

∗({®pn−1}, ®s0).®s)

where {®pi } denotes the first i packets of the input packet sequence.

Note that in the inductive step, Spec* applies the Spec function

to the nth packet in the sequence and the output state resulting

from applying Spec* inductively.

Definition 4.3. Impl is a function with inputs comprising a

packet vector ®p and a state vector ®s , and with outputs comprising

an updated packet vector and an updated state vector, as reflected

by the functionality of the programmable switch.

Definition 4.4. Impl* is a function with inputs comprising a

sequence of n packets { ®pn } and an initial state vector ®s0, and with

outputs comprising a final packet vector and a final state vector

after the nth packet is processed by the programmable switch. It is

defined inductively as follows:

Impl
∗({®p1}, ®s0) = Impl(®p1, ®s0)

Impl
∗({®pn }, ®s0) = Impl(®pn , Impl

∗({®pn−1}, ®s0).®s)

Definition 4.5. Influence: Consider the set S = {®p, ®s}. We say

that u ∈ S influences v ∈ S , if there exist c1 and c2 such that

Spec({®p, ®s}/{u},u = c1).v , Spec({®p, ®s}/{u},u = c2).v (or) if there

exists inter ∈ S such that u influences inter and inter influences v .

Let I(i) denote a vector of indices of state variables that influence
the output of the ith packet field, and let NI(i) denote a vector of
indices of state variables that do not influence the output of the ith

packet field.

Definition 4.6. Slicing-based synthesis

∀i ∀®p ∀ ®s, Spec(®p, ®s)[i, I (i)] = Impli (®p, ®s)[i, I (i)]

where i represents the ith packet field and I (i) is as defined above.

We refer to Impli as a slicing-based implementation function for

the ith packet field. The Impli are “stacked” on top of each other

to form Impl.

Definition 4.7. Trace-based synthesis

∀i ∀{®pn } ∀ ®s0, Spec
∗({®pn }, ®s0)[i, I (i)] = Impl

∗
i ({®pn }, ®s0)[i, I (i)]

Theorem 4.8. Slicing-based synthesis =⇒ Trace-based syn-
thesis.

Proof. We will prove this for any i (i.e., for all ith packet fields),

and by induction on n, the number of packets in the sequence of

packets processed by the switch.

For the base step, n = 1, we have:

Spec
∗({®p1}, ®s0)[i, I (i)] = Spec(®p1, ®s0)[i, I (i)] . . . (def of Spec

∗
)

Impl
∗
i ({®p1}, ®s0)[i, I (i)] = Impli (®p1, ®s0)[i, I (i)] . . . (def of Impl

∗
i)

Switch Code Generation Using Program Synthesis SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

By the definition of slicing-based synthesis,

Spec
∗({®p1}, ®s0)[i, I (i)] = Impl

∗
i ({®p1}, ®s0)[i, I (i)]

Induction hypothesis: Assume that the claim holds for n = k :

∀i ∀{®pk }∀ ®s0, Spec
∗({®pk }, ®s0)[i, I (i)] = Impl

∗
i ({®pk }, ®s0)[i, I (i)] (1)

Induction step: Now we prove the claim for n = k + 1.

Spec
∗({®pk+1}, ®s0)[i, I (i)]

= Spec(®pk+1, Spec
∗({®pk }, ®s0).®s)[i, I (i)] . . . (def of Spec

∗
)

= Impli (®pk+1, Spec
∗({®pk }, ®s0).®s)[i, I (i)]

. . . (def of Slicing-based synthesis)

= Impli (®pk+1, Spec
∗({®pk }, ®s0).®s[I (i)], Spec

∗({®pk }, ®s0).®s[NI (i)])[i, I (i)]

. . . (split state variables into influence and non-influence parts)

= Impli (®pk+1, Impl
∗
i ({®pk }, ®s0).®s[I (i)], Spec

∗({®pk }, ®s0).®s[NI (i)])[i, I (i)]

. . . (by equation (1))

= Impli (®pk+1, Impl
∗
i ({®pk }, ®s0).®s[I (i)], Impl

∗
i ({®pk }, ®s0).®s[NI (i)])[i, I (i)]

. . . (the variables in NI(i) cannot influence the variables in I(i) or i,

so we can set them to any value without affecting the final output)

= Impli (®pk+1, Impl
∗
i ({®pk }, ®s0).®s)[i, I (i)]

. . . (merge state variables with indices in I(i) and NI(i))

= Impl
∗
i ({®pk+1}, ®s0)[i, I (i)] . . . (def of Impl

∗
i)

□

4.5 Other Optimizations

Scaling up synthesis to larger input ranges. SKETCH is designed

to synthesize implementations that meet the specification on a small

range of inputs for each input variable (e.g., all x values between 0

and 31 in Figure 4). Scaling SKETCH to synthesize implementations

that meet the specification on larger ranges of inputs (e.g., all 32-

bit integers) is challenging. This is because the SAT solver within

SKETCH isn’t optimized for rapid verification on large input ranges

for two reasons. First, SKETCH’s unary encoding is particularly

inefficient in its use of memory [26, 70]. Second, a SAT solver

does not contain many of the theories available in a full-blown

SMT solver such as Z3 [29]. Z3 is better suited for verifying spec-

implementation equivalence over large input ranges because it

contains specialized decision procedures for integers and bit vectors

that scale to larger input ranges.

To address this problem, we decouple the input ranges for syn-

thesis and verification, adapting an idea proposed in prior work [57].

We use SKETCH to synthesize a solution for a small input bit width

of 2, i.e., all packet fields and state variables are assumed to take

values between 0 and 2
2 − 1. Then, we take the resulting completed

sketch (i.e., with all holes filled in with integers) and use Z3 to

verify it on a larger input bit width (currently all 10-bit integers). If

Z3 finds a counterexample, we rerun SKETCH again, using asserts

to rule out the previously obtained hole values (hole elimination)

or using the newly found counterexample to create an additional

concrete input on which the specification and the sketch must

agree (counterexample assertion). Between hole elimination and

counterexample assertion, we find that counterexample assertion

performs much better because it can rule out not only the hole

assignment that led to the current Z3 verification counterexample,

but also all other hole assignments that could have potentially led

to that counterexample.

Constant synthesis. One challenge for program synthesis tools is

synthesizing holes with large bit ranges. In our context, these are

immediate operands for ALUs, which can be up to 32 bits wide.

The difficult of synthesizing such large holes has been documented

before [30, 65]. With SKETCH, we also observed a steep increase

in synthesis time when using holes with bit widths exceeding 15

bits [26]. To synthesize large holes for immediate operands, we

developed an algorithm based on using a dynamic pool of constants

from which SKETCH picks immediate operands. Our algorithm

initializes this pool to all constants that appear in the input packet

transaction. In addition, we augment the pool with all numbers in a

small range of integers (0–3). If Z3 verification fails, we update the
pool with packet field and state variable values appearing in the

counterexample produced by Z3. This algorithm is very efficient

but incomplete—the main source of incompleteness in Chipmunk—

because it only samples a few integer values; hence, it can fail to

find a large hole when one actually exists. However, empirically, we

find that it performs well because it adapts to the supplied program

and learns from counterexamples.

Canonicalization. SKETCH needs to allocate packet fields to PHV

containers and state variables to stateful ALUs, while respecting

the hardware constraint that no PHV container or stateful ALU is

oversubscribed. There are many feasible allocations that satisfy this

constraint. However, in a symmetric grid, where the same type of

ALU is tiled out over the entire grid and each ALU can use any PHV

container as an operand, many of these allocations are equivalent

to each other. We can use this symmetry to speed up synthesis.

In a symmetric grid, for PHV allocation, we rename packet fields

so that they have canonical names f1, f2, . . . following [35]. Then,

we allocate f1 to container 1, f2 to container 2, and so on. This

allocation is as good as any other because in a symmetric grid all

containers are equivalent in their abilities (i.e., an ALU can use any

of these containers as an operand and can output to any of these

containers). In other words, any allocation can be canonicalized by

renaming variables.

For state variables, the situation is similar, but with one impor-

tant difference. It doesn’t matter which stateful ALU within a stage

a state variable is allocated to due to symmetry. However, it does
matter which stage’s ALU a state variable is allocated to. This is

because of dependencies within the feed-forward pipeline: an up-

date to a state variable in a later stage can depend on the value of a

state variable in an earlier stage, but the reverse is disallowed in

a feed-forward pipeline. Thus state allocation exhibits symmetry

within ALUs in one stage, but not across ALUs of different stages.

Hence, we still use SKETCH to determine which stage a state vari-

able should go into, but assign the state variable to a canonical

stateful ALU within that stage.

4.6 Reducing Grid Size by Parallel Search
So far, we have focused on code generation for an ALU grid of a

certain depth and width. To reduce resource usage, we need to find

a small grid to implement each slice of the packet transaction. To

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiangyu Gao et al.

Synthesis
Problem

pkt_0 state_m

Grid

 Synthesis
Solution

Slice 0 Slice n

Grid Grid Grid Grid Grid

pkt_1

Grid

Slice 1

Grid Grid
𝑛1 ∗ 𝑛22 ∗ 11 ∗ 1 𝑛1 ∗ 𝑛2 𝑛1 ∗ 𝑛22 ∗ 1 2 ∗ 11 ∗ 1 1 ∗ 1

Figure 5: Parallel search to reduce grid size

do so, we independently solve a synthesis problem for each com-

bination of slice and grid size in parallel (Figure 5). For a packet

transaction to be successfully synthesized, all its slices must be suc-

cessfully synthesized at some grid size (which may be different for

each slice). Thus, if a transaction can be successfully synthesized,

the time to successfully synthesize that transaction is the maximum

of the times to successfully synthesize each of its slices. For each

slice, the time to successfully synthesize that slice is the minimum

of the times to successfully synthesize that slice across all grid sizes

searched. We set an upper bound on the grid size and a timeout on

the synthesis time for any one of the parallel synthesis problems.

For each parallel synthesis problem, we internally use SKETCH’s

parallel mode [53]; thus, there are two levels of parallelism. Our

parallel search strategy over grid sizes does not guarantee the small-

est possible grid size for a problem, but builds on our observation

that smaller grid sizes generally lead to faster synthesis times, if the

slice can actually fit into the smaller grid. We have not currently

implemented a full system to run synthesis problems in parallel and

emulate it using sequential execution in our evaluations. However,

we believe it will be straightforward to implement such a system

given the embarrassingly parallel nature of our search.

5 RETARGETABLE CODE GENERATION
The techniques in the last section can generate hole-value assign-

ments for a packet-processing program written in a high-level lan-

guage, given a sketch of the pipeline. Two problems remain: (1) a

sketch must be developed for the pipeline; and (2) the hole-value as-

signments must be mapped to a format that the hardware/backend

understands.

Unfortunately, we found that developing a sketch of the pipeline

manually is error-prone for several reasons (§5.1). Hence, we de-

veloped a pipeline description language, a declarative specification
of a pipeline ALU’s compute capabilities and the interconnection

between these ALUs (§5.1). We designed a pipeline sketch generator
(§5.2) that takes specifications in this language and automatically

produces a sketch of the pipeline. Thus, this pipeline description lan-

guage enables retargetable code generation [10, 41]: Chipmunk can

generate code for a number of distinct packet-processing pipelines,

given a description of each pipeline.

Pipeline descriptions were also directly useful in targeting the

two backends that we support, a simulator for the Banzai machine

model [1] and the Tofino ASIC [23]. In particular, we were able to

use declarative pipeline specifications to automatically generate

executable Banzai behavioral models (§5.3), which were helpful in

debugging Chipmunk itself. We also leveraged the pipeline specifi-

cation language to produce a Tofino-specific code generator that

l ∈ literals v ∈ variables bin_op ∈ binary ops un_op ∈ unary ops

t ∈ ALU type declaration ::= stateful | stateless

d ∈ packet field declarations ::= list of variables v
h ∈ hole declarations ::= list of variables v

sv ∈ state variable declarations ::= list of variables v
e ∈ expressions ::= l | v | e bin_op e | un_op e

| Mux(e, . . .)
s ∈ statements ::= e = e | s ; s | return (e)

| if (e) {s } | if (e) {s } else {s }
p ∈ alu specification ::= t ;d ;h; sv ; s

Figure 6: ALU DSL. Mux is an input/output mux.

Hole Value
Assignments P4 file

Packet
Transactions
Domino File

Output Packet
Traces

Tofino
Binary

Chipmunk Tofino
Compiler

Output Packet
Traces

Input Packet
Traces

Tofino
Templates

ALUs

Programmer

Compiler
developer

Compiler
developer

Input Packet
Traces

Rust Code

P4
Code-Gen

dgen

dsim

Figure 7: Workflow of Chipmunk
“lifts” the low-level hole-value assignments from Chipmunk to a

surface language (i.e., P4-14) accepted by Tofino’s compiler (§5.4).

5.1 Pipeline Description Language
Writing a pipeline sketch manually is hard for three reasons.

(1) Large sketches: Even for modest grid sizes (e.g., a 3-by-3

pipelined grid), the total number of hole bits and the number

of lines in the sketch file often exceeds a few hundred (see

Appendix A for an example sketch).

(2) Different ALU capabilities on different targets: There

are significant differences in the capabilities of ALUs in the

different pipelines we were experimenting with: a simulator

of a switch pipeline (Banzai [69]), the Tofino switch [23],

and subsets of the ALU functionalities provided by either.

We found that constructing a pipeline sketch manually for

each of these three different cases—and each ALU within

each case—was highly error-prone.

(3) Diverse grid interconnects among ALUs: The spe-

cific connectivity among ALUs and PHVs differs from one

pipeline to another. For example, Banzai provides all-to-all

connectivity between all PHVs and ALUs: an ALU operand

can come from any PHV. However, for wiring efficiency,

some switching chips only provide all-to-all connectivity

within clusters of PHVs and ALUs: an ALU operand can only

come from a PHV in the same cluster as that ALU.

For these reasons, we developed two domain-specfic languages

(DSLs) to write switch pipeline specifications, one each for (1) com-
putation (e.g., opcodes of an ALU) and (2) communication (e.g., the

interconnection between these ALUs to create a pipeline through

input and output muxes). Thus, the computation DSL specifies local
intra-ALU features of a switch pipeline, while the communication

DSL specifies global inter-ALU features of a switch pipeline. We ex-

pect these specifications to be written once at switch design time by

the backend compiler developer, not repeatedly by the programmer

who writes Domino programs (Figure 7).

Switch Code Generation Using Program Synthesis SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

DSL to describe ALU computation. We developed an ALU DSL

(Figure 6) to specify the computational capabilities of a single switch

ALU, i.e., the programmable knobs available in the ALU (Table 1).

Figure 6 shows the grammar of the ALU DSL. The DSL allows a

developer to specify the number of ALU operands, where each

operand comes from (i.e., packet field, state, immediate operand),

the ALU’s operation over its operands in the form of simplified

C-like code, and what value(s) the ALU must return. Our DSL

is expressive in its ability to express diverse target ALUs. It can

express all the stateful and stateless instructions proposed as Banzai

atoms [69], the stateless and stateful ALUs in the Tofino ASIC [23],

as well as subsets of the functionality of each of these ALUs.

DSL to describe ALU interconnect. We specify the interconnec-

tions between ALUs in a grid using a grid template written in the

Jinja2 template language [9]. A grid template is a skeleton of a

sketch for a pipeline grid, representing the scaffolding or glue re-

quired to connect together ALUs, such as wires and muxes con-

necting PHVs to ALU inputs, and ALU outputs to PHVs (Figure 1).

The grid template has placeholders to hold SKETCH code for ALUs

(generated from the ALU DSL) and can repeat ALUs for a given

width and depth.

5.2 Pipeline Sketch Generation
Chipmunk’s pipeline sketch generator takes an ALU DSL program

and a grid template as input and generates a sketch (e.g., Appen-

dix A) corresponding to the ALU, repeating ALU code as necessary

to fill out the 2D grid specified in the grid template. Chipmunk

then feeds the generated sketch to SKETCH, which returns a value

for each hole or says that the sketch is infeasible. If it is infeasible,

we return a compile error. If it is feasible, we use the hole-value

assignments to program the backends (§5.3, §5.4, and §6).

5.3 Producing Behavioral Models
A declarative pipeline description language enables the automatic
generation of pipeline behavioral models for the Banzai machine

model from pipeline DSL specifications, akin to P4-bmv2 [28]. We

designed a behavioral-model-generator, dgen [78], which takes

as input a switch pipeline specification in our DSLs (§5.1) and

generates Rust code that simulates the action of that pipeline on

packets. The Rust code when built produces an executable version

of the pipeline dsim [78], which can consume and output packets,

manipulating both the packets and internal pipeline state, serving as

a behavioral model for the pipeline. Thus, dsim allows us to observe
the input-output behavior of machine code (e.g., ALU opcodes, mux

settings, etc.) produced by Chipmunk.

We used dsim to fuzz-test Chipmunk using random test packets

for 100+ packet transactions drawn from our programs (§7), i.e., test

whether Chipmunk generates correct pipelined machine code from

packet transactions. We did this in three steps. First, we created

random packet vectors as test inputs. Second, we directly executed

the packet transaction on these test packets to record its input-

output behavior without pipelining. We performed direct execution

by writing each packet transaction as a Rust function and running

the Rust function repeatedly on the test packets. Third, we compare

the behavior from direct execution with the behavior dsim produces
on the hole-value assignments generated by Chipmunk for the same

packet transaction. If the two behaviors are different, it points to a

bug in Chipmunk’s code generation. Our fuzz testing has not yet

revealed any bugs.

5.4 Lifting to Switch Surface Languages
Leveraging a DSL for expressing ALUs also enabled us to translate

the outputs from Chipmunk’s synthesis into an input language

supported by the Tofino switch compiler [19], P4-14. We did this

in two steps. First, we developed a P4-14 template program in

Jinja2 [9], with placeholders for P4 registers and tables, which have

a one-to-one correspondence with the 2D grid of ALUs from the

pipeline sketch. For instance, each stateless ALU corresponds to

a P4-14 primitive action, each stateful ALU corresponds to a P4

extern [18], and each state variable corresponds to a P4-14 register.

Second, we filled in the placeholders in the P4-14 template by

translating the low-level integer-valued hole-value assignments

outputted by synthesis into higher level P4-14 code accepted by the

Tofino compiler. In particular, we translated holes from stateless

ALUs (opcodes, operands) and stateful ALUs (opcodes, operands,

and choice of output PHVs) into P4-14 code by leveraging a traversal

of the abstract syntax tree (AST) of the ALU expressed in our DSL.

For instance, let’s say the ALU DSL file contains a function that

takes three parameters: two operands (A and B) and an opcode.

The hole-value assignments provide the value of the opcode, say 3,

which stands for the + operation. Then, we can traverse the AST

corresponding to the function and simplify the function to A+B,

by treating the opcode as a constant (3) and applying constant

propagation on the AST.

6 EXPERIENCES WITH TOFINO
After filling in the placeholders, the P4 program is given to the

Tofino compiler to generate a Tofino binary. However, this can

sometimes result in an incorrect implementation due to a subtle

interplay between P4’s sequential semantics and the Tofino hard-

ware’s parallel operation. To see why, consider a “swap” packet

transaction that swaps the value of two packet fields (top and bot-

tom) without using any temporary fields. This transaction can be

implemented in Tofino using a single pipeline stage with 2 ALUs

(top and bottom). The top stateless ALU transfers the bottom PHV

to the top PHV and the bottom stateless ALU does the reverse, using

an add opcode in each ALU with 0 as one operand. Chipmunk can

also generate hole-value assignments in our behavioral model for

this one-stage implementation of the swap transaction.

Now, how do we realize this swap in P4? We can create two P4

tables, one each for the top and bottom ALU, and use P4-14 apply
statements to execute each table’s ALU on incoming packets. How-

ever, the apply statement has sequential semantics. Because each

table reads a field (top/bottom) that the other writes (bottom/top),

sequential semantics will force the Tofino compiler to infer a read-

after-write dependency between the two tables. Hence, the Tofino

compiler will place the tables in two consecutive stages, not one.

This is not just wasteful in stages, it is incorrect relative to what

we want: it results in both top and bottom taking the same value

instead of swapping values. Here, the Tofino compiler is correctly

respecting P4-14’s sequential semantics for apply statements, but

the behavior is different from what Chipmunk expects from parallel

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiangyu Gao et al.

execution of the ALUs. In other words, it is hard to express the

intra-stage parallelism required for operations like swap directly in

P4, despite the hardware supporting it.
1

To address the gap in the abstraction levels between Chipmunk’s

needs and P4-14, we use a compiler pragma to instruct the Tofino

P4 compiler to ignore all table dependencies that it finds on its own.

We instead enforce all dependencies ourselves. Chipmunk already

handles dependencies because dependencies need to be respected

to generate machine code that agrees with the specification. To en-

force dependencies that Chipmunk finds, we use a second compiler

pragma. This pragma instructs the Tofino compiler to place a table

containing a stateful/stateless ALU in the same stage that the ALU

belonged to in Chipmunk’s output.

Reflections. Considerable research has looked at raising the level

of abstraction of languages for networking. On the other hand,

when building the Tofino backend, we needed to lower the level of
abstraction to enforce low-level control over the hardware using

pragmas. Pragmas are effectively a mechanism to get the Tofino

compiler out of the way—to perform fewer program analyses and

make fewer modifications. We could have avoided pragmas and

created a simpler backend if Tofino supported direct assembly pro-

gramming. We hope our results make a case for switching chip

vendors to support such low-level interfaces to their chips.

7 EVALUATION
Our evaluation answers the questions listed below.

(1) How does synthesis-based compilation compare to rule-

based compilation? (§7.1) We investigate this using the Chip-

munk and Domino compilers for the Banzai target, on the

metrics of (i) ability to compile programs successfully, (ii)

resource usage (i.e., pipeline stages and ALUs per stage) of

successfully compiled programs, and (iii) compile time.

(2) Can synthesis effectively target a switching ASIC? (§7.2) We

show experimental results using Chipmunk to target Tofino.

(3) How beneficial are slicing and the other optimizations in

synthesis-based compilation? (§7.3)

Choice of baseline. For our baseline compiler, we used the Domino

rule-based compiler because it can also take as input a high-level

specification in transactional style, similar to Chipmunk. Domino

also has a few classical compiler optimizations baked into it (e.g.,

common subexpression elimination, strength reduction, fusing code

segments, etc.) [6]. We note that Domino also uses SKETCH for

the final step of code generation after much preprocessing using

classical rewrite rules [69, §4.3]. As our results show, using SKETCH

so late in code generation doesn’t help significantly with compiler

quality. By contrast, Chipmunk treats the entire code generation

problem as a program synthesis problem, with little preprocessing.

Comparing with a commercial compiler like the Tofino com-

piler [19] would have been preferable to comparing with a research

prototype like Domino. However, we can not directly compare with

the Tofino compiler because it does not support a transactional

style of programming in either of its frontend languages (P4-14

1
We note that Tofino does support a swap primitive that can be directly invoked

by the programmer as an intrinsic function without writing a swap program in P4.

However, the broader point illustrated by our programmer-written swap still holds:

code generation requires us to express intra-stage parallelism, which is challenging.

and P4-16). Instead, with the Tofino compiler, the programmer has

to manually partition code into different tables and then chain

together the tables to implement their desired feature—in other

words, program at a lower level than the P4-16 @atomic or packet

transactional style. We note, however, that we have observed the

same butterfly effects that motivated our work (§2) with the Tofino

compiler as well. Our results make a case for including program

synthesis within commercial compilers, allowing them to support

a similar transactional programming style.

Benchmarks. We collected 14 benchmarks (Table 2) from multiple

sources [58, 59, 69]. These were previously written as Domino

programs using the packet transactions abstraction [69]. All of

these benchmarks are known to successfully compile with Domino

using one of the 7 stateful atoms combined with the stateless atom

proposed by Banzai [69]. We model each of these 7+1 atoms as an

ALU using our ALU DSL. We verified that these benchmarks can

indeed be successfully compiled with Chipmunk using the same

ALU that was used for Domino.

We further create semantic-preserving rewrites of the bench-

marks, which we call mutations, e.g., Figure 2. Comparing Chip-

munk and Domino using mutations allows us to measure whether

the two compilers can still compile mutations of an original pro-

gram that was itself successfully compiled. The mutations can also

be used to compare Domino and Chipmunk’s resource consumption

on a larger set of programs than we started out with.

To create mutations, we added a compiler pass to the Domino

compiler to modify Domino programs in semantic-preserving ways.

This pass repeatedly transforms programs by randomly picking one

of three transformations. The pass modifies (1) if(x) B else A
into if(!x) A else B , (2) if(A and B) into if (B and A), and
(3) if(x) into if(x and 1==1). These mutations are simplistic and

are not fully representative of the diverse ways in which developers

craft programs that are semantically equivalent. Yet, evenwith these

mutations, we demonstrate (§7.1) that Domino fails to compilemany

mutations, while Chipmunk successfully compiles all of them.

Experimental setup. We used a single stateless ALU type for all ex-

periments regardless of which stateful ALU we used. This stateless

ALU is modeled after the stateless atom proposed in Banzai [69].

For the stateful ALU, we used the same stateful Banzai atom for

each benchmark as reported in the benchmark’s source [58, 59, 69].

Unless stated otherwise, we run Chipmunk with slicing (§4.3) and

all other optimizations (§4.5) enabled. We use SKETCH’s parallel

mode, which takes advantage of multi-core parallelism [53].

Recall that Chipmunk uses parallel search over different slices

and grid sizes (§4.6) by running different synthesis problems on

different machines. Additionally, eachmachine needs multiple cores

for SKETCH’s parallel mode. We do not have a cluster of physical

machines readily available and the cost of running unoptimized

Chipmunk on EC2 is prohibitive. Instead, we used a single 32-core

64-hyperthread 256-GB RAM machine (AMD Opteron 6272) to run

Chipmunkwith the Banzai ALUs (§7.1 and §7.3) and used a single 28-

core 56-hyperthread 64-GB RAMmachine (Intel Xeon Gold 6132) to

run Chipmunk with the Tofino ALUs (§7.2), and report compilation

times emulating the parallel search strategy from §4.6. That is, the

compile times we present in §7.1, §7.2, and §7.3 were obtained by

sequential experiments, with the compile time for a given ALU grid

Switch Code Generation Using Program Synthesis SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

size being the maximum across all per-slice compile times, and the

per-slice compile time being the minimum compile time across all

ALU grid sizes for that slice. When we don’t use slicing, the compile

time is simply the minimum compile time across all ALU grid slices.

We also estimate the monetary cost of running Chipmunk with

slicing on Amazon EC2.

7.1 Synthesis vs. Rule-Based Compilation
For each of the 14 benchmarks, we created 10 mutations using our

mutating compiler pass. This gives us 140 programs to compare

Domino and Chipmunk on, using the following metrics: (i) what %

of the mutations of an original program can the compiler success-

fully compile? (we call this the compile rate), (ii) how many pipeline

stages and ALUs per stage are needed to fit the program?, (iii) how

long does it take for successful compilation? We average across 10

mutations for each benchmark.

We report our results in Table 2. We find that (i) Chipmunk can

compile all the mutations we produced, while Domino fails in many

cases, (ii) Chipmunk’s average compilation times are longer than

Domino’s, but largely fit into our time budget of ∼1 hour (§3), and

(iii) when both Chipmunk and Domino can both compile a mutation,

Chipmunk requires fewer pipeline stages and slightly higher ALUs

per stage than Domino. However, stages are far more constrained

resources (e.g., 32) compared to ALUs in each stage (e.g., 224) [39].

The quality benefits of synthesis also come with a monetary cost:

Chipmunk requires more compute resources than Domino (§4.6).

However, this cost is reasonable. We use some typical numbers

to estimate the cost of a Chipmunk compilation when implement-

ing the strategy from §4.6 in the cloud. To estimate the degree of

parallelism with slicing, we use some typical numbers from our

benchmarks. Assuming 5 slices per program across both packet

fields and state variables, and 10 grid sizes to be searched for each

slice (i.e., up to a 3*3 grid, which is the largest grid size we search),

we require around 50 VMs. We pick the m5.16xlarge spot EC2 in-

stance [2] with 64 vCPUs and 256 GB RAM because it is closest to

our local machine. With per-second billing, a one-minute minimum

billing time [3], and a typical synthesis time of 5 minutes (Table 2),

the compilation cost is roughly $2.66, with the fairly pessimal as-

sumption that all 50 VMs are occupied the entire 5 minutes. We

note that the alternative of rule-based compilers will cost much

more in hourly developer wages [60] due to compilation failures.

7.2 Compilation to Tofino Switching ASIC
After modeling the Tofino stateful and stateless ALUs using the

ALU DSL (§5.1), we were able to compile and run 10 out of our

14 original benchmarks (without mutations) on Tofino. We report

the resource consumption and the compilation times in Table 4.

Compilation times are well within an hour for all benchmarks.

The times in Tables 4 and 2 are different because (1) the ALUs are

different (Banzai vs. Tofino) and (2) different machines were used.

However, we were unable to compile 4 benchmarks to Tofino.

The mutations in Table 2 were theoretically guaranteed to compile

to some Banzai atom because the original programs compiled to

that atom; we do not have any such guarantees with Tofino as

these benchmarks have not been compiled to Tofino before. In

fact, for all 4 of these benchmarks, the resulting sketch file for

at least one slice was infeasible up to a grid size of 2*3. Looking

closer, we noticed that these 4 benchmarks need a more complicated

condition for conditional state updates than supported by Tofino—

a computational limit (§3). Hence, we suspect these benchmarks

may not be able to compile to any grid size given our Tofino ALU

model. However, we cannot yet prove that these programs cannot

be compiled to even an infinite grid of a certain ALU type. Proving

such “unrealizability” is an area of research in synthesis [50].

7.3 Benefits of Optimizations
We now compare Chipmunk’s performance with and without slic-

ing on two metrics: pipeline resource usage and compilation time.

We keep all other optimizations enabled. Table 3 shows the benefits

of slicing for the Banzai backend. We observe that slicing provides

a few orders of magnitude speedup on several benchmarks; this

is primarily because slicing a program allows us to fit the pro-

gram within a smaller grid, which translates into a smaller search

space/time for SKETCH. Slicing causes a small increase in ALUs

per stage because slicing does not share computations between

slices. However, Chipmunk with slicing still consumes fewer stages

than Domino (Table 2). Beyond performance, slicing also helped

us debug the generated P4 programs on Tofino. Each slice could be

tested independently on a small grid—instead of testing the whole

program on a larger grid. This enabled us to localize and fix bugs

in P4 code generation faster.

Even with slicing, some benchmarks (BLUE (decrease) and State-

ful firewall) still incur a long synthesis time. To speed these up, we

can involve the programmer in synthesis and have them set some

holes in the generated sketch (e.g., ALU opcodes, output muxes)

based on their insight into the program. For BLUE (decrease) and

Stateful firewall, we observed speedups of 4.18 × and 37.14 × rel-

ative to the Chipmunk times in Table 2 by intelligently setting

the value of only 3% of all the holes, hinting at the promise of an

interactive approach to further reduce compile time.

We also measured the benefits of using counterexample assertion

vs. hole elimination when integrating SKETCH with Z3 and the

benefits of canonicalization (§4.5). Overall, with all other optimiza-

tions and slicing enabled, we observed an average 6.21 × speedup

with counterexample assertion vs. hole elimination and an average

11.02 × speedup with canonicalization (Appendix C).

8 LIMITATIONS AND FUTUREWORK
We now briefly discuss Chipmunk’s main limitations along with

avenues for future work. First, while Chipmunk rejects far fewer

programs than Domino (Table 2), it is still incomplete and can reject

feasible programs. In particular, because slicing has an additional

cost PHV/ALU cost, a sliced packet transaction may no longer fit

into a small grid, while the original packet transaction may have.

Additionally, our constant synthesis algorithm is also incomplete.

Second, even after slicing, Chipmunk’s compile times are still much

longer than Domino. We believe there is still room to improve

Chipmunk by exploiting dependencies between parts of the packet

transaction, similar to Domino’s use of computation DAGs (Fig-

ure 3). As shown in §7.3, interactively involving the programmer

can also substantially speed up synthesis-based compilation; this

is another area that we plan to explore. Third, Chipmunk uses

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiangyu Gao et al.

Program Chipmunk
compile rate

Domino com-
pile rate

Chipmunk
depth, width

Domino depth,
width

Chipmunk
compile
time (s)

Domino
compile
time (s)

Banzai
ALU [69]

BLUE (increase) [44] 100% 0% 4,6 N/A 213 N/A pred raw
BLUE (decrease) [44] 100% 0% 4,6 N/A 1134 N/A sub

CONGA [32] 100% 0% 1,7 N/A 16 N/A pair
Flowlet switching [68] 100% 100% 3,8 8.3,4 280 1.5 pred raw

Learn filter [69] 100% 100% 3,8 17.5,4 291 2.1 raw
Marple new flow [59] 100% 0% 2,3 N/A 12 N/A pred raw
Marple TCP NMO [59] 100% 0% 3,5 N/A 15 N/A pred raw

RCP [76] 100% 100% 2,9 5.6,5 34 2 pred raw
Sampling [69] 100% 0% 2,2 N/A 33 N/A if else

SNAP heavy hitter [34] 100% 100% 1,3 3.3,3 70 1.2 pair
Spam Detection [34] 100% 80% 1,3 3.1,3 51 7 pair
Stateful firewall [34] 100% 100% 4,8 15.5,4.1 7020 1 pred raw

STFQ [47] 100% 0% 2,7 N/A 36 N/A nested if
DNS TTL change [36] 100% 0% 3,10 N/A 223 N/A nested if

Table 2: Compile rate, time, and resources averaged over 10 mutations; ALU names refer to Banzai’s atoms.

Program Compile time (s) Depth, width
Slicing Orig. speedup Slicing Orig.

BLUE (increase) [44] 213 2792 13.11× 4,6 4,4

BLUE (decrease) [44] 1134 32400 28.57× 4,6 4,4

CONGA [32] 16 16 1× 1,7 1,6

Flowlet switching [68] 280 61035 217.98× 3,8 4,7

Learn filter [69] 291 291 1× 3,8 5,6

Marple new flow [59] 12 12 1× 2,3 2,3

Marple TCP NMO [59] 15 16 1.07× 3,5 3,4

RCP [76] 34 96 2.82× 2,9 3,6

Sampling [69] 33 33 1× 2,2 2,2

SNAP heavy hitter [34] 70 75 1.07× 1,3 1,2

Spam Detection [34] 51 62 1.22× 1,3 1,2

Stateful firewall [34] 7020 >86400 >12.31× 4,8 N/A

STFQ [47] 36 1795 49.86× 2,7 4,9

DNS TTL change [36] 223 >86400 >387.44× 3,10 N/A

Table 3: Resource usage, compile time with and without slic-
ing, averaged over 10 mutations. 1 day timeout.

Program Depth, width Chipmunk com-
pile time (s)

BLUE(increase) [44] 2, 5 112

BLUE(decrease) [44] 2, 6 113

CONGA [32] 1, 7 6

Flowlet switching [68] 2, 7 95

Marple new flow [59] 1, 2 5

Marple TCP NMO [59] 2, 4 8

RCP [76] 1, 8 26

Sampling [69] 1, 2 24

SNAP heavy hitter [34] 1, 3 40

DNS TTL change [36] 2, 8 34

Table 4: Compiling original benchmarks to Tofino.

significant compute resources for its parallel grid search (§4.6) to

reduce compile time; reducing this resource usage by packing syn-

thesis runs into fewer machines is another area for future work.

Fourth, currently all our benchmarks are relatively small programs.

For future work, we hope to scale Chipmunk sufficiently to per-

form code generation for much larger production-quality programs

such as switch.p4 [22]. Fifth, Chipmunk is currently restricted to

code generation and does not concern itself with the problem of

allocating memory for large stateful arrays or match-action tables.

Combining ILP [56] or SMT [45] techniques for memory allocation

with synthesis for code generation is another area for future work.

9 RELATEDWORK
Synthesis has been applied to synthesize network updates [59, 66],

routing table configurations from high-level policies [42, 74], poli-

cies from configurations [37], and control planes [75]. These efforts

target network configurations and policies pertaining to access con-

trol, reachability, and isolation. In contrast, Chipmunk uses program

synthesis to generate packet-processing code for programmable

switches. Program slicing [77] computes a subset of program state-

ments that can influence a variable’s value at some program location.

It has been applied to debugging [77], network verification [61, 64],

and query optimization [33]. Chipmunk applies slicing in the new

context of machine code generation for switches, requiring consid-

erable adaptation of the basic slicing idea (§4.3).

10 CONCLUSION
We presented Chipmunk, a program-synthesis-based compiler for

switches. Chipmunk fits programs into limited switch pipeline

resources—programs which might otherwise be rejected by rule-

based compilers. To do so, it leverages domain-specific synthesis

techniques to expedite compilation and uses a pipeline description

language to target multiple backends. We hope that the techniques

and results we have presented will stimulate follow-on research

in designing program synthesis algorithms that compile programs

faster and with fewer compute resources, and produce machine

code with lower switch resource consumption. We also believe

the ideas here are more generally applicable to FPGA [13, 51] and

ASIC-based [52] SmartNIC pipelines.

ACKNOWLEDGEMENTS
We are grateful to our shepherd, Rob Sherwood, the anonymous

SIGCOMM reviewers, AmyOusterhout, Cheng Tan, KeithWinstein,

Mina Tahmasbi Arashloo, Michael Walfish, and Aurojit Panda for

their many comments on previous drafts of this paper. We thank

Armando Solar-Lezama for his detailed responses to our questions

on the SKETCH mailing list and Alvin Cheung for many insightful

discussions on program synthesis. This work was supported in part

by the National Science Foundation award FMitF 1837030.

Switch Code Generation Using Program Synthesis SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

REFERENCES
[1] A machine model for line-rate programmable switches. https://github.com/

packet-transactions/banzai.

[2] Amazon EC2 Spot Instances Pricing. https://aws.amazon.com/ec2/spot/pricing/.

[3] Announcing Amazon EC2 per second billing. https://aws.amazon.com/

about-aws/whats-new/2017/10/announcing-amazon-ec2-per-second-billing/.

[4] Concurrency Model for P4. https://github.com/p4lang/p4-spec/issues/48.

[5] DepQBF Solver. http://lonsing.github.io/depqbf/.

[6] Domino Compiler. https://github.com/chipmunk-project/domino-compiler.

[7] High-Capacity StrataXGS Trident 4 Ethernet Switch Series. https:

//www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/

bcm56880-series.

[8] Intel FlexPipe. http://www.intel.com/content/dam/www/public/us/en/

documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf.

[9] Jinja - Jinja Documentation (2.10.x). https://jinja.palletsprojects.com/en/2.10.x/.

[10] lcc, A Retargetable Compiler for ANSI C. https://sites.google.com/site/

lccretargetablecompiler/.

[11] LLVM Link Time Optimization: Design and Implementation. https://llvm.org/

docs/LinkTimeOptimization.html.

[12] MarkusRabe/cadet: A fast and certifying solver for quantified Boolean formulas.

https://github.com/MarkusRabe/cadet.

[13] Mellanox Innova-2 Flex Open Programmable SmartNIC. https:

//www.mellanox.com/page/products_dyn?product_family=276&mtag=

programmable_adapter_cards_innova2flex&ssn=7j4vr3u5elh91qnkb9ubjsdlo4.

[14] Mellanox Products: Spectrum 2 Ethernet Switch ASIC. https://www.mellanox.

com/page/products_dyn?product_family=277&mtag=spectrum2_ic.

[15] NPL Specification. https://github.com/nplang/NPL-Spec.

[16] P4-16 language specification. https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.

html.

[17] P4 Compiler. https://github.com/p4lang/p4c.

[18] P4 Extern Types. https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html#sec_

extern.

[19] P4 Studio | Barefoot. https://www.barefootnetworks.com/products/

brief-p4-studio/.

[20] P4 Tutorial. https://github.com/p4lang/tutorials.

[21] P4_16 language specification. https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.

html.

[22] p4lang/switch: Consolidated switch repo (API, SAI and Nettlink). https://github.

com/p4lang/switch.

[23] Product Brief Tofino Page | Barefoot. https://barefootnetworks.com/products/

brief-tofino/.

[24] Programming the Forwarding Plane - Nick McKeown. https://forum.stanford.

edu/events/2016/slides/plenary/Nick.pdf.

[25] Quantified Boolean Formula. https://en.wikipedia.org/wiki/True_quantified_

Boolean_formula.

[26] [Sketchusers] Strange error for large integer constants. https://lists.csail.mit.edu/

pipermail/sketchusers/2019-July/000094.html.

[27] The P4 Language Specification. https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf.

[28] The reference P4 software switch. https://github.com/p4lang/behavioral-model.

[29] The Z3 Theorem Prover. https://github.com/Z3Prover/z3.

[30] Alessandro Abate, Cristina David, Pascal Kesseli, Daniel Kroening, and Elizabeth

Polgreen. Counterexample Guided Inductive Synthesis Modulo Theories. In

Computer Aided Verification, 2018.
[31] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-

ciples, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing

Co., Inc., USA, 2006.

[32] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-

tus, Rong Pan, Navindra Yadav, and George Varghese. CONGA: Distributed

Congestion-aware Load Balancing for Datacenters. In SIGCOMM, 2014.

[33] Jesus M. Almendros-Jimenez, Josep Silva, and Salvador Tamarit. XQuery Opti-

mization Based on Program Slicing. In CIKM, 2011.

[34] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford, and

David Walker. SNAP: Stateful network-wide abstractions for packet processing.

In SIGCOMM, 2016.

[35] Sorav Bansal and Alex Aiken. Automatic Generation of Peephole Superoptimizers.

In ASPLOS, 2006.
[36] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. EXPOSURE:

Finding Malicious Domains Using Passive DNS Analysis. In NDSS, 2011.
[37] Rudiger Birkner, Dana Drachsler Cohen, Laurent Vanbever, and Martin Vechev.

Config2Spec: Mining Network Specifications from Network Configurations. In

NSDI, 2020.
[38] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-

ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David

Walker. P4: Programming Protocol-independent Packet Processors. SIGCOMM
CCR, 2014.

[39] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin

Izzard, Fernando Mujica, and Mark Horowitz. Forwarding Metamorphosis: Fast

Programmable Match-action Processing in Hardware for SDN. In SIGCOMM,

2013.

[40] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Vargaftik, Alon

Berger, Gal Mendelson, Mohammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy,

Ariel Orda, and Tom Edsall. dRMT: Disaggregated Programmable Switching. In

SIGCOMM, 2017.

[41] Jack W. Davidson and Christopher W. Fraser. The Design and Application of a

Retargetable Peephole Optimizer. TOPLAS, 1980.
[42] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev. Net-

Complete: Practical Network-Wide Configuration Synthesis with Autocomple-

tion. In NSDI, 2018.
[43] Grigory Fedyukovich, Maaz Bin Safeer Ahmad, and Rastislav Bodik. Gradual

Synthesis for Static Parallelization of Single-pass Array-processing Programs. In

PLDI, 2017.
[44] Wu-chang Feng, Kang G. Shin, Dilip D. Kandlur, and Debanjan Saha. The BLUE

Active Queue Management Algorithms. IEEE/ACM Transactions on Networking,
2002.

[45] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou, Bingchuan

Tian, Chen Sun, Dennis Cai, Ming Zhang, and Minlan Yu. Lyra: A Cross-Platform

Language and Compiler for Data Plane Programming on Heterogeneous ASICs.

In SIGCOMM, 2020.

[46] Xiangyu Gao, Taegyun Kim, Aatish Kishan Varma, Anirudh Sivaraman, and

Srinivas Narayana. Autogenerating Fast Packet-Processing Code Using Program

Synthesis. In HotNets, 2019.
[47] Pawan Goyal, Harrick M. Vin, and Haichen Chen. Start-time Fair Queueing: A

Scheduling Algorithm for Integrated Services Packet Switching Networks. In

SIGCOMM, 1996.

[48] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Syn-

thesis of Loop-Free Programs. In PLDI, 2011.
[49] Gary D. Hachtel and Fabio Somenzi. Logic synthesis and verification algorithms.

Springer, 2006.

[50] Qinheping Hu, Jason Breck, John Cyphert, Loris D’Antoni, and Thomas Reps.

Proving Unrealizability for Syntax-Guided Synthesis. In CAV, 2019.
[51] Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman. The

P4->NetFPGA Workflow for Line-Rate Packet Processing. In FPGA, 2019.
[52] Stephen Ibanez, Muhammad Shahbaz, and Nick McKeown. The Case for a

Network Fast Path to the CPU. In HotNets, 2019.
[53] Jinseong Jeon, Xiaokang Qiu, Armando Solar-Lezama, and Jeffrey S. Foster. Adap-

tive Concretization for Parallel Program Synthesis. In CAV, 2015.
[54] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,

Changhoon Kim, and Ion Stoica. NetChain: Scale-Free Sub-RTT Coordination.

In NSDI, 2018.
[55] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,

Changhoon Kim, and Ion Stoica. NetCache: Balancing Key-Value Stores with

Fast In-Network Caching. In SOSP, 2017.
[56] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. Compiling Packet

Programs to Reconfigurable Switches. In NSDI, 2015.
[57] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. Veri-

fied Lifting of Stencil Computations. In PLDI, 2016.
[58] Anirudh Sivaraman Kaushalram. Designing Fast and Programmable Routers. PhD

thesis, EECS Department, Massachusetts Institute of Technology, September

2017.

[59] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat

Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim.

Language-Directed Hardware Design for Network Performance Monitoring.

In SIGCOMM, 2017.

[60] U.S. Bureau of Labor Statistics. Occupational Employment and Wages, May

2018, Software developers, Systems software. https://www.bls.gov/oes/current/

oes151133.htm.

[61] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott Shenker.

Verifying Reachability in Networks with Mutable Datapaths. In NSDI, 2017.
[62] Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An Wang, Abhinav

Jangda, Bastian Hagedorn, Henrik Barthels, Samuel J. Kaufman, Vinod Grover,

Emina Torlak, and Rastislav Bodik. Swizzle Inventor: Data Movement Synthesis

for GPU Kernels. In ASPLOS, 2019.
[63] Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar

Dhurjati. Scaling Up Superoptimization. In ASPLOS, 2016.
[64] Gordon D. Plotkin, Nikolaj Bjørner, Nuno P. Lopes, Andrey Rybalchenko, and

George Varghese. Scaling Network Verification Using Symmetry and Surgery.

In POPL, 2016.
[65] Regehr, John. Synthesizing Constants. https://blog.regehr.org/archives/1636.

[66] Shambwaditya Saha, Santhosh Prabhu, and P.Madhusudan. NetGen: Synthesizing

Data-plane Configurations for Network Policies. In SOSR, 2015.
[67] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic Superoptimization. In

ASPLOS, 2013.
[68] Shan Sinha, Srikanth Kandula, and Dina Katabi. Harnessing TCPs Burstiness

using Flowlet Switching. In HotNets, 2004.

https://github.com/packet-transactions/banzai
https://github.com/packet-transactions/banzai
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/about-aws/whats-new/2017/10/announcing-amazon-ec2-per-second-billing/
https://aws.amazon.com/about-aws/whats-new/2017/10/announcing-amazon-ec2-per-second-billing/
https://github.com/p4lang/p4-spec/issues/48
http://lonsing.github.io/depqbf/
https://github.com/chipmunk-project/domino-compiler
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://jinja.palletsprojects.com/en/2.10.x/
https://sites.google.com/site/lccretargetablecompiler/
https://sites.google.com/site/lccretargetablecompiler/
https://llvm.org/docs/LinkTimeOptimization.html
https://llvm.org/docs/LinkTimeOptimization.html
https://github.com/MarkusRabe/cadet
https://www.mellanox.com/page/products_dyn?product_family=276&mtag=programmable_adapter_cards_innova2flex&ssn=7j4vr3u5elh91qnkb9ubjsdlo4
https://www.mellanox.com/page/products_dyn?product_family=276&mtag=programmable_adapter_cards_innova2flex&ssn=7j4vr3u5elh91qnkb9ubjsdlo4
https://www.mellanox.com/page/products_dyn?product_family=276&mtag=programmable_adapter_cards_innova2flex&ssn=7j4vr3u5elh91qnkb9ubjsdlo4
https://www.mellanox.com/page/products_dyn?product_family=277&mtag=spectrum2_ic
https://www.mellanox.com/page/products_dyn?product_family=277&mtag=spectrum2_ic
https://github.com/nplang/NPL-Spec
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://github.com/p4lang/p4c
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html#sec_extern
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html#sec_extern
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://github.com/p4lang/tutorials
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://github.com/p4lang/switch
https://github.com/p4lang/switch
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://forum.stanford.edu/events/2016/slides/plenary/Nick.pdf
https://forum.stanford.edu/events/2016/slides/plenary/Nick.pdf
https://en.wikipedia.org/wiki/True_quantified_Boolean_formula
https://en.wikipedia.org/wiki/True_quantified_Boolean_formula
https://lists.csail.mit.edu/pipermail/sketchusers/2019-July/000094.html
https://lists.csail.mit.edu/pipermail/sketchusers/2019-July/000094.html
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://github.com/p4lang/behavioral-model
https://github.com/Z3Prover/z3
https://www.bls.gov/oes/current/oes151133.htm
https://www.bls.gov/oes/current/oes151133.htm
https://blog.regehr.org/archives/1636

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiangyu Gao et al.

[69] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad

Alizadeh, Hari Balakrishnan, George Varghese, Nick McKeown, and Steve Lick-

ing. Packet Transactions: High-Level Programming for Line-Rate Switches. In

SIGCOMM, 2016.

[70] Armando Solar Lezama. Program Synthesis By Sketching. PhD thesis, EECS

Department, University of California, Berkeley, Dec 2008.

[71] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. Sketching

Concurrent Data Structures. In PLDI, 2008.
[72] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay

Saraswat. Combinatorial Sketching for Finite Programs. In ASPLOS, 2006.
[73] Haoyu Song. Protocol-oblivious Forwarding: Unleash the Power of SDN Through

a Future-proof Forwarding Plane. In HotSDN, 2013.

[74] Kausik Subramanian, Loris D’Antoni, and Aditya Akella. Genesis: Synthesizing

Forwarding Tables in Multi-tenant Networks. In POPL, 2017.
[75] Kausik Subramanian, Loris D’Antoni, and Aditya Akella. Synthesis of Fault-

Tolerant Distributed Router Configurations. In SIGMETRICS, 2018.
[76] C.H. Tai, J. Zhu, and N. Dukkipati. Making Large Scale Deployment of RCP

Practical for Real Networks. In INFOCOM, 2008.

[77] Mark Weiser. Program Slicing. In ICSE, 1981.
[78] Michael D. Wong, Aatish Kishan Varma, and Anirudh Sivaraman. Testing com-

pilers for programmable switches through switch hardware simulation. ArXiv,
abs/2005.02310, 2020.

Switch Code Generation Using Program Synthesis SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Appendices are supporting material that has not been peer-reviewed.

A EXAMPLE OF CODE GENERATION SKETCH
This appendix presents a simplified version of the sketch generated by Chipmunk for a 2-by-2 grid and a simple spec. We use . . .wherever

appropriate to signify that the code is similar to code presented before.

// num_pipeline_stages = 2
// num_alus_per_stage = 2 (2 stateless ALUs + 2 stateful ALUs)
// num_phv_containers = 2
// imux stands for input mux; omux for output mux
int stateless_alu_0_0_imux1_ctrl= ??(1); int stateless_alu_0_1_imux1_ctrl= ??(1);
int stateless_alu_0_0_imux2_ctrl= ??(1); int stateless_alu_0_1_imux2_ctrl= ??(1);
int stateless_alu_0_0_immediate= ??(2); int stateless_alu_0_1_immediate= ??(2);
int stateless_alu_0_0_opcode= ??(2); int stateless_alu_0_1_opcode= ??(2);
int stateful_alu_0_0_mode_global= ??(1); int stateful_alu_0_1_mode_global= ??(1);
int stateful_alu_0_0_const_0_global= ??(2); int stateful_alu_0_1_const_0_global= ??(2);
int stateless_alu_1_0_imux1_ctrl= ??(1); int stateless_alu_1_1_imux1_ctrl= ??(1);
int stateless_alu_1_0_imux2_ctrl= ??(1); int stateless_alu_1_1_imux2_ctrl= ??(1);
int stateless_alu_1_0_immediate= ??(2); int stateless_alu_1_1_immediate= ??(2);
int stateless_alu_1_0_opcode= ??(2); int stateless_alu_1_1_opcode= ??(2);
int stateful_alu_1_0_mode_global= ??(1); int stateful_alu_1_1_mode_global= ??(1);
int stateful_alu_1_0_const_0_global= ??(2); int stateful_alu_1_1_const_0_global= ??(2);
int stateful_alu_0_0_imux_ctrl= ??(1); int stateful_alu_0_1_imux_ctrl= ??(1);
int stateful_alu_1_0_imux_ctrl= ??(1); int stateful_alu_1_1_imux_ctrl= ??(1);
int omux_phv_0_0_ctrl= ??(2); int omux_phv_0_1_ctrl= ??(2);
int omux_phv_1_0_ctrl= ??(2); int omux_phv_1_1_ctrl= ??(2);
int salu_active_0_0= ??(1); int salu_active_0_1= ??(1);
int salu_active_1_0= ??(1); int salu_active_1_1= ??(1);

// Definitions of muxes and ALUs of the switch pipeline
// Input mux for each ALU
int stateful_alu_imux_0_0(int input0,int input1, int stateful_alu_0_0_imux_ctrl_local) {

if (stateful_alu_0_0_imux_ctrl_local == 0) { return input0;}
else { return input1; }

}
int stateful_alu_imux_0_1(int input0,int input1, int stateful_alu_0_1_imux_ctrl_local) {...}
int stateful_alu_imux_1_0(int input0,int input1, int stateful_alu_1_0_imux_ctrl_local) {...}
int stateful_alu_imux_1_1(int input0,int input1, int stateful_alu_1_1_imux_ctrl_local) {...}
// Output mux for each PHV container
int omux_phv_0_0(int input0,int input1,int input2,int omux_phv_0_0_ctrl_local) {

if (omux_phv_0_0_ctrl_local == 0) {return input0;}
else if (omux_phv_0_0_ctrl_local == 1) {return input1;}
else {return input2;}

}
int omux_phv_0_1(int input0,int input1,int input2,int omux_phv_0_1_ctrl_local) {...}
int omux_phv_1_0(int input0,int input1,int input2,int omux_phv_1_0_ctrl_local) {...}
int omux_phv_1_1(int input0,int input1,int input2,int omux_phv_1_1_ctrl_local) {...}
// Definition of ALUs
int stateless_alu_0_0_mux1(int input0,int input1, int stateless_alu_0_0_imux1_ctrl_local) {

if (stateless_alu_0_0_imux1_ctrl_local == 0) { return input0;}
else { return input1; }

}
int stateless_alu_0_0_mux2(int input0,int input1, int stateless_alu_0_0_imux2_ctrl_local) {...}
int stateless_alu_0_0(int input0,int input1,int opcode,int immediate,int imux1_ctrl_hole_local,int imux2_ctrl_hole_local) {

int pkt_0 = stateless_alu_0_0_mux1(input0,input1,imux1_ctrl_hole_local);
int pkt_1 = stateless_alu_0_0_mux2(input0,input1,imux2_ctrl_hole_local);
if (opcode==0) { return pkt_0+pkt_1;}
else if (opcode==1) { return pkt_0-pkt_1;}
else if (opcode==2) { return pkt_0+immediate;}
else { return pkt_0-immediate;}

}
int stateless_alu_0_1_mux1(int input0,int input1, int stateless_alu_0_1_imux1_ctrl_local) {...}
int stateless_alu_0_1_mux2(int input0,int input1, int stateless_alu_0_1_imux2_ctrl_local) {...}
int stateless_alu_0_1(int input0,int input1,int opcode,int immediate,int imux1_ctrl_hole_local,int imux2_ctrl_hole_local) {...}
int stateful_alu_0_0_Mode(int input0,int input1,int mode) {

if (mode == 0) {return input0;}
else {return input1;}

}
int stateful_alu_0_0(ref int state_0, int pkt_0, int mode, int const_0) {

int old_state_0 = state_0;
state_0 = stateful_alu_0_0_Mode(state_0 + const_0, pkt_0, mode);
return old_state_0;

}
int stateful_alu_0_1_Mode(int input0,int input1,int mode) {...}
int stateful_alu_0_1(ref int state_0, int pkt_0, int mode, int const_0) {...}
int stateful_alu_1_0_Mode(int input0,int input1,int mode) {...}
int stateful_alu_1_0(ref int state_0, int pkt_0, int mode, int const_0) {...}
int stateful_alu_1_1_Mode(int input0,int input1,int mode) {...}
int stateful_alu_1_1(ref int state_0, int pkt_0, int mode, int const_0) {...}

// Data type for holding result from spec and implementation
struct StateAndPacket {

int pkt_0;
int state_0;
int state_1;

}

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiangyu Gao et al.

// Specification
|StateAndPacket| program(|StateAndPacket| state_and_packet) {

state_and_packet.pkt_0 = 1 + state_and_packet.state_0;
state_and_packet.state_1 = state_and_packet.state_0;
return state_and_packet;

}

// Implementation
|StateAndPacket| pipeline (|StateAndPacket| state_and_packet) {

// Constraints to allocate state variables to stateful ALUs
assert((salu_active_0_0 + salu_active_0_1) <= 2);
assert((salu_active_1_0 + salu_active_1_1) <= 2);
assert((salu_active_0_0 + salu_active_1_0) <= 1);
assert((salu_active_0_1 + salu_active_1_1) <= 1);
// Container i will be allocated to packet field i from the spec (canonical allocation).
int input_0_0 = 0;
int input_0_1 = 0;
// One variable for each stateful ALU's state operand
// This will be allocated to a state variable from the program using the salu_active indicator variables above.
int state_operand_salu_0_0 = 0;
int state_operand_salu_0_1 = 0;
int state_operand_salu_1_0 = 0;
int state_operand_salu_1_1 = 0;
/*********** Stage 0 *********/
// Read each PHV container from corresponding packet field.
input_0_0 = state_and_packet.pkt_0;
// Stateless ALUs
int destination_0_0 = stateless_alu_0_0(input_0_0,input_0_1,stateless_alu_0_0_opcode,stateless_alu_0_0_immediate,

stateless_alu_0_0_imux1_ctrl,stateless_alu_0_0_imux2_ctrl);
int destination_0_1 = stateless_alu_0_1(...);
// Stateful operands
int packet_operand_salu0_0_0 = stateful_alu_imux_0_0(input_0_0,input_0_1,stateful_alu_0_0_imux_ctrl);
int packet_operand_salu0_1_0 = stateful_alu_imux_0_1(...);
// Read stateful ALU slots from allocated state vars.
if (salu_active_0_0 == 1) {

state_operand_salu_0_0 = state_and_packet.state_0;
}
if (salu_active_0_1 == 1) {...}
// Stateful ALUs
int state_alu_output_0_0 = stateful_alu_0_0(state_operand_salu_0_0,packet_operand_salu0_0_0,

stateful_alu_0_0_mode_global,stateful_alu_0_0_const_0_global);
int state_alu_output_0_1 = stateful_alu_0_1(...);
// Outputs
int output_0_0 = omux_phv_0_0(state_alu_output_0_0,state_alu_output_0_1,destination_0_0,omux_phv_0_0_ctrl);
int output_0_1 = omux_phv_0_1(state_alu_output_0_0,state_alu_output_0_1,destination_0_1,omux_phv_0_1_ctrl);
// Write state_0
if (salu_active_0_0 == 1) { state_and_packet.state_0 = state_operand_salu_0_0;}
// Write state_1
if (salu_active_0_1 == 1) { state_and_packet.state_1 = state_operand_salu_0_1;}
/*********** Stage 1 *********/
// Input of this stage is the output of the previous one.
int input_1_0 = output_0_0;
int input_1_1 = output_0_1;
...
// Write pkt_0 at the end of the pipeline.
state_and_packet.pkt_0 = output_1_0;
// Return updated packet fields and state vars
return state_and_packet;

}
// Main sketch routine that asserts equivalence of pipeline and spec
harness void main(int pkt_0, int state_0, int state_1) {

|StateAndPacket| x = |StateAndPacket|(pkt_0 = pkt_0,state_0 = state_0,state_1 = state_1);
|StateAndPacket| pipeline_result = pipeline(x);
|StateAndPacket| program_result = program(x);
assert(pipeline_result.state_0 == program_result.state_0);
assert(pipeline_result.state_1 == program_result.state_1);
assert(pipeline_result.pkt_0 == program_result.pkt_0);

}

Switch Code Generation Using Program Synthesis SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Initialize X to
random inputs

Verify hole assignment
on all inputs !(X ⊆ Y)

Synthesize holes that
work for inputs #

Hole Assignment

Counterexample Input c

Failure

Add c to X

Success

No CounterexamplesNo Hole Assignment

Figure 8: The CEGIS algorithm for synthesis.

Program Cex assertion (sec) Hole elimination (sec)
BLUE (increase) [44] 213 >2130

BLUE (decrease) [44] 1134 >11340

CONGA [32] 16 16

Flowlet switching [68] 280 >2800

Learn filter [69] 291 291

Marple new flow [59] 12 12

MARPLE TCP NMO [59] 15 15

RCP [76] 34 >340

SAMPLING [69] 33 >330

SNAP heavy hitter [34] 70 >700

Spam Detection [34] 51 >510

Stateful firewall [34] 7020 >70200

DNS TTL change [36] 223 438

STFQ [47] 36 36

Table 5: Compilation time for Hole elimination vs. coun-
terexample assertion in SKETCH-Z3 loop

Program Canonicalized (sec) Synthesized (sec)
BLUE (increase) [44] 213 273

BLUE (decrease) [44] 1134 1056

CONGA [32] 16 18

Flowlet switching [68] 280 1112

Learn filter [69] 291 355

Marple new flow [59] 12 19

MARPLE TCP NMO [59] 15 23

RCP [76] 34 46

SAMPLING [69] 33 59

SNAP heavy hitter [34] 70 70

Spam Detection [34] 51 51

Stateful firewall [34] 7020 9810

DNS TTL change [36] 223 616

STFQ [47] 36 4803

Table 6: Compilation time in seconds for synthesized vs.
canonical allocation

B PROGRAM SYNTHESIS USING SKETCH
We briefly describe SKETCH’s internals here; [70] has more details.

SKETCH is given as inputs a specification to satisfy and a partial

program (the sketch) (Figure 4). Let x be ann-bit vector representing
all inputs to both the specification S and the partial program P . The
task of the synthesizer is to determine values of all the holes in P
such that the results of executing the specification and the sketch

on an input x , S(x) and P(x), are the same for all x . Let c be an

m-bit vector representing all holes that need to be determined (or

“filled in”) by SKETCH to complete the sketch. Then, the program

synthesis problem solves for c in the following formula in first-order

logic [72]:

∃c ∈ {0, 1}m ,∀x ∈ {0, 1}n : S(x) = P(x , c) (2)

Equation 2 is an instance of the quantified boolean formula prob-

lem (QBF) [25]. QBF is a generalization of boolean satisfiability

(SAT) that allows multiple ∀ and ∃ quantifiers; SAT implicitly sup-

ports a single ∀ or ∃. While QBF solvers exist [5, 12], they are not

optimized for the QBF instances found in program synthesis [70].

Hence, SKETCH uses an algorithm called counterexample-guided
inductive synthesis (CEGIS) [71, 72], designed to work efficiently for

the QBF instances found in program synthesis.

CEGIS (Figure 8) exploits the bounded observation hypothesis: for
typical specifications, there are a small number of representative

inputs that form a “perfect test suite,” i.e., if the specification and

the completed sketch agree on this test suite, then they agree on

all inputs. To exploit this hypothesis, CEGIS repeatedly alternates

between two phases: (1) synthesizing on a small set of concrete

test inputs and (2) verifying that the completed sketch matches the

specification on all possible inputs. A failed verification generates a

counterexample that is added to the set of concrete test inputs, and a

fresh iteration of synthesis+verification follows. CEGIS terminates

when either the verification phase succeeds or the synthesis phase

fails, i.e., there is no way to find values for the holes that allow P
and S to match on the concrete test input set.

The synthesis phase of CEGIS is represented by the following

formula. Here x1,x2, . . . xk are the current set of concrete test in-

puts:

∃c ∈ {0, 1}m : S(x1) = P(x1, c) ∧ . . . S(xk) = P(xk , c) (3)

The verification phase is represented by the following formula.

Here, c∗ is the hole solution being verified:

∀x ∈ {0, 1}n : S(x) = P(x , c∗) (4)

Both the synthesis and verification phases of CEGIS are simpler than

solving Equation 2 directly as a QBF problem. This is because each

phase fixes either the test inputs (synthesis) or holes (verification)

to concrete values, which turns the resulting subproblem into a

SAT problem, which can be fed to a more efficient SAT (instead of

QBF) solver.

C DEEP DIVE INTO CHIPMUNK
OPTIMIZATIONS

We now examine the impact of our optimizations on compile time.

In these experiments, we keep slicing and all other optimizations

enabled, only toggling on or off one optimization.

C.1 Hole elimination vs. counterexample
assertion

We considered different modes in which Z3 and SKETCH can coop-

erate in code generation. Our intuition was that counterexample

assertion would lead to faster compile time because hole elimina-

tion only eliminates the particular hole assignment that caused that

Z3 failure, while a new counterexample would eliminate all the
hole assignments that could have caused that failure. Our exper-

iments (Table 5) confirm this intuition. We set a timeout for the

hole elimination to 10× the time for counterexample assertion to

limit run time of our experiments; without a timeout, the benefits

of counterexamples would be even more pronounced. Hence, we

use counterexample assertion.

C.2 Canonical vs. synthesized allocation
We study two ways in which state variables can be allocated to

stateful ALUs and packet fields can be allocated to PHV containers.

In canonical allocation, as discussed in §4.5, a packet field is always

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Xiangyu Gao et al.

allocated to its canonical container and a state variable is always

allocated to its canonical ALU after SKETCH determines its stage. In

synthesized allocation, on the other hand, we disregard symmetry,

and ask SKETCH to find the allocation from scratch. Hence, in

synthesized allocation, SKETCH determines which container to

use for a field, and which stage and which stateful ALU in that

stage to use for a state variable. Table 6 shows the results. We

find that canonical allocation and synthesized allocation perform

similarly on benchmarks that have a short compilation time, but

that canonical allocation can significantly reduce time on the longer

benchmarks.

	Abstract
	1 Introduction
	2 Background
	3 The Case for Program Synthesis
	4 Code generation as synthesis
	4.1 Code Generation Using SKETCH
	4.2 Packet Transactions as Specifications
	4.3 The Slicing Technique
	4.4 Correctness of slicing
	4.5 Other Optimizations
	4.6 Reducing Grid Size by Parallel Search

	5 Retargetable code generation
	5.1 Pipeline Description Language
	5.2 Pipeline Sketch Generation
	5.3 Producing Behavioral Models
	5.4 Lifting to Switch Surface Languages

	6 Experiences with Tofino
	7 Evaluation
	7.1 Synthesis vs. Rule-Based Compilation
	7.2 Compilation to Tofino Switching ASIC
	7.3 Benefits of Optimizations

	8 Limitations and Future Work
	9 Related Work
	10 Conclusion
	References
	A Example of code generation sketch
	B Program synthesis using SKETCH
	C Deep dive into Chipmunk optimizations
	C.1 Hole elimination vs. counterexample assertion
	C.2 Canonical vs. synthesized allocation

