
Autogenerating Fast Packet-Processing Code
Using Program Synthesis

Xiangyu Gao
New York University

Taegyun Kim
New York University

Aatish Kishan Varma
New York University

Anirudh Sivaraman
New York University

Srinivas Narayana
Rutgers University

ABSTRACT
Packet-processing code should be fast. But, it is hard
to write fast code for programmable substrates such
as high-speed switches, multicore SoC SmartNICs, FP-
GAs, middleboxes, and the end-host stack. Today, expert
developers with deep familiarity with the underlying
hardware handcraft such code. Making things worse,
building optimizing compilers for these substrates re-
quires significant development effort, which may not be
available for these new, niche, and evolving substrates.

We propose an alternative: to automatically generate
fast packet-processing code using program synthesis. For
the domain of packet processing, using synthesis can
generate faster code than an optimizing compiler at the
cost of increased compile time. As a case study, we apply
program synthesis to build a code generator, Chipmunk,
for a simulator of the protocol-independent switch ar-
chitecture (PISA). Chipmunk generates code for many
programs that a previous code generator based on clas-
sical compiler optimizations rejects, and code generated
by Chipmunk uses much fewer hardware resources. We
also outline future directions in applying program syn-
thesis to code generation for packet processing.
ACM Reference Format:
Xiangyu Gao, Taegyun Kim, Aatish Kishan Varma, Anirudh
Sivaraman, and Srinivas Narayana. 2019. Autogenerating Fast
Packet-Processing Code Using Program Synthesis. In ACM
Workshop on Hot Topics in Networks (HotNets ’19), November
13–15, 2019, Princeton, NJ, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3365609.3365858

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
HotNets ’19, November 13–15, 2019, Princeton, NJ, USA
© 2019 Copyright held by the owner/author(s). Publication rights
licensed to the Association for Computing Machinery.
ACM ISBN 978-1-4503-7020-2/19/11. . . $15.00
https://doi.org/10.1145/3365609.3365858

int spec(int x) {
return x*5;

}

int sketch1(int x)
implements spec {
return x << ??(2) + x;
}

int sketch2(int x)
implements spec {
return x << ??(2);

}

Specification Feasible sketch with
hole set to 2

Infeasible sketch; no
possible hole assignment

Figure 1: Syntax-guided synthesis in SKETCH. ??(b)
is a hole whose value is in [0, 2b − 1]. << is the left-
shift operator.

1 INTRODUCTION
There has been a proliferation of programmable net-
work substrates recently. Examples include high-speed
programmable switches, multicore SoC SmartNICs, FP-
GAs, software middleboxes, and the networking stack
within servers. With growing link speeds, there is a
need to run ever faster packet-processing code on these
substrates. For example, SmartNICs run at line rates of
40–100 Gbit/s. Switches run at 100 Gbit/s per port and a
few Tbit/s in aggregate.
Although these substrates are programmable, devel-

oping fast programs for them is hard for two reasons.
First, developing such fast programs requires manual
optimization by experts who are familiar with each un-
derlying hardware architecture. These experts must be
aware of the cache and memory hierarchy for CPUs
and SoC-based NICs; of ALU, TCAM, and SRAM lim-
its for programmable switches; and of lookup tables,
placement, and routing for an FPGA. For instance, Mi-
crosoft hired a dedicated team of hardware engineers to
program its FPGA-based SmartNIC [36]. Second, while
optimizing compilers might alleviate the difficulties of
generating fast code, building optimizing compilers for
a target requires significant engineering effort spanning
decades [48]—effort that may not be available for new,
niche, and evolving network hardware.
In response to the above concerns, we propose the

use of program synthesis to develop code generators
for emerging network substrates. Program synthesis is
the process of automatically generating a program that
meets a given specification. We focus on a recent vari-
ant of program synthesis called syntax-guided synthesis
(SyGuS) [25, 57, 64] that constrains the search space of

https://doi.org/10.1145/3365609.3365858
https://doi.org/10.1145/3365609.3365858

programs using syntactic restrictions. As a concrete ex-
ample of syntax-guided synthesis, in SKETCH [17, 59], a
programmer provides a program synthesizer the specifi-
cation along with a sketch (Figure 1): a partial program
with holes representing values within a finite range of in-
tegers. The partial program constrains the search space
syntactically and encodes the programmer’s insight into
the structure of the implementation. The synthesizer
completes the sketch by filling in all holes with con-
crete values so that the completed sketch meets the
specification—or says that synthesis is infeasible.
Syntax-guided synthesis can be applied to code gen-

eration by (1) using the developer’s program, say in C
or P4, as the specification, (2) using the sketch to repre-
sent the structure of the substrate, and (3) using holes
to represent a large but finite number of low-level hard-
ware configurations such as assembly opcodes, operand
choices for instructions, and contents of look-up tables.
Resource constraints can be incorporated by limiting the
number of sketch holes and using assertions over the
holes. For instance, a switch pipeline with a fixed set of
ALUs in each stage can be viewed as a sketch with holes
representing hardware configurations such as choices
of ALU opcodes and immediate operands (Appendix A).
Further, the number of holes in the sketch are limited
to reflect physical resource constraints on the number
of ALUs and stages in the pipeline.

For fast packet processing, there is value to generating
machine code that is near-optimal on some metric (e.g.,
throughput or latency). Synthesis-based code generators
are much better at finding such near-optimal code rela-
tive to traditional optimizing compilers. This is because
an optimizing compiler’s algorithms are designed to gen-
erate consistently good code for all programs within a
reasonable compilation time budget; however, synthesis
can discover much better code by performing exhaus-
tive search for a longer time. For instance, synthesis
techniques have produced x86 and ARM binaries that
outperform gcc -O3 on programs that are a few hundred
instructions long [47, 51]. The price of near-optimal
code is increased compile time—a price worth paying
for fast packet processing.
Additionally, synthesis might permit rapid prototyp-

ing of compilers. This is because synthesis allows us to
declaratively specify code generation for different sub-
strates as synthesis problems, e.g., using sketches. This
could allow us to reuse synthesis technology for per-
forming code generation across many different packet-
processing substrates.

Despite these potential benefits over optimizing com-
pilers, syntax-guided synthesis faces a key challenge: it
is a search problem over a large combinatorial search
space of programs. The space grows exponentially with
the number of bits in the hardware configurations (i.e.,

the number of bits in the SKETCH holes). However, we
believe that our vision is feasible for three reasons. First,
after over a decade of research, there are now mature
open-source synthesis tools [59, 64] and promising real-
world applications of synthesis [23, 38, 46, 51, 53]. Sec-
ond, several fast packet-processing programs are nat-
urally small (e.g., BLUE [35], RED [37], or RCP [63])
and simple (e.g., no pointers or loops in P4 [31]). This
makes synthesis more tractable. Third, many hardware
substrates exhibit significant symmetry. This allows us
to prune the search space for synthesis by considering
only one exemplar hardware configuration out of many
equivalent configurations (§3; Figure 4).
We present a case study of applying program syn-

thesis to code generation for packet-processing switch
pipelines based on the protocol-independent switch ar-
chitecture (PISA) [15] (§2.2). The compilation of packet-
processing programs to such switch pipelines has an all
or nothing flavor [56]: programs that are compiled suc-
cessfully run at line rate; all other programs fail to com-
pile. Unlike x86 software, there is no graceful degrada-
tion of program performance with complexity. Hence, in
practice, it can be a complex process to write a program
to “fit” into the underlying switch hardware. Compound-
ing this, existing switch compilers [11, 56] routinely
reject a program even when a semantically-equivalent
rewrite of the program can be compiled, pushing the
burden of finding such a rewrite onto the developer.

We design Chipmunk (§3), a synthesis-aided code gen-
erator, to generate low-level code for a PISA hardware
simulator. We compare Chipmunk with Domino [56]
(§4). Chipmunk generates pipelined implementations
of many programs that Domino rejects. This is because
Domino incorrectly decides that the programs are too
expressive to fit into the switch’s computational capa-
bilities. For programs that both Domino and Chipmunk
can generate code for, code generated by Chipmunk has
much smaller pipeline depth.

We also outline directions for future work in applying
program synthesis to generating fast packet processing
code (§5). We describe three applications: optimizing
packet processing on processors, automatically approx-
imating programs to run faster, and providing perfor-
mance troubleshooting hints to developers.

2 BACKGROUND
We now overview the programming language we use to
program packet-processing pipelines, the hardware ar-
chitecture of these pipelines, and the program synthesis
technology that we use as a building block.

2.1 Programming language
Several languages now exist for packet processing,
e.g., P4-14 [19] P4-16 [12], POF [60], NPL [10], and

Stateful ALU
State

storage

PHV

Input
Mux

if (count == 10):
count = 0
pkt.sample = 1

else:
count++
pkt.sample = 0

Program as a packet transaction in Domino

Chipmunk
compiler

Simulator for programmable switch hardware

State
Variable

Packet
Field

PHV
Container

Stateless ALU

Stateless ALU

Stateful ALU
State

storage

PHV

PHV
Container

Stateless ALU

Stateless ALU

PHV

PHV
Container

Stateful ALU
State

storage

Stateful ALU
State

storage

Output
Mux

PHV
Container

PHV
Container

PHV
Container

Figure 2: Chipmunk compilation to a 2-by-2 PISA grid. Wires into input, output muxes elided for clarity.
Domino [56]. This paper uses Domino as the language
in which the input program is specified by the developer.
Domino is well-suited to expressing packet processing
with an algorithmic flavor (e.g., implementing RCP over
all packets) where the task is compute-heavy, in con-
trast to forwarding tasks (e.g., tunneling, ACLs) where
the task is memory-heavy. Figure 2 shows an example
Domino program that samples every 11th packet going
through a switch. Domino provides transactional se-
mantics: operations in a Domino program execute from
start to finish atomically, as though packets are being
processed by the pipeline serially exactly one packet
at a time. This frees the programmer from having to
deal with concurrency issues, delegating those to the
compiler instead. The same transactional semantics are
supported by P4-16’s @atomic construct [3, 13]. Hence,
we believe it should be straightforward to extend our
work to generate code for algorithmic tasks expressed
in P4-16 using the @atomic construct.

2.2 Hardware architecture
We consider a packet-processing pipeline based on the
hardware architecture described in RMT [32] and Ban-
zai [56]. RMT provides a hardware architecture for pro-
grammable match-action processing, while Banzai ex-
tends RMT with stateful computation. The hardware
architecture described in RMT and Banzai is commonly
known as the Protocol Independent Switch Architec-
ture (PISA) [15] and is the dominant architecture for
high-speed programmable switches today [6, 14].

We simulate a simplified form of PISA by abstracting
out all switch computation into a 2D grid of ALUs that
process all packets (Figure 2). The x axis of this grid
represents pipeline stages; the y axis represents parallel
ALUswithin a pipeline stage. Packets enter the grid from
the left and exit from the right, and the grid is assumed
to support a throughput of 1 packet per clock cycle, i.e.,
the line rate of the switching ASIC. A program’s packet
fields are stored in the packet header vector (PHV). The
PHV is a set of containers. Each container can be thought
of as memory that holds a packet field (e.g., pkt.sample
in Figure 2) as it is passed and transformed between

Configuration Description
ALU opcode ALU’s operation (e.g.,

add, sub)
Input mux control Choice of ALU’s input
Output mux control Where a container’s

value comes from
Packet field allocation The container a packet

field occupies
State variable allocation The ALU a state variable

occupies
Immediate operands Constant operands for

instructions
Table 1: PISA hardware configurations

stages. Similarly, a program’s state variables (e.g., count
in Figure 2) are stored within stateful ALUs.
ALUs are PISA’s computation units and can modify

either packet fields alone (stateless ALUs) or both fields
and switch state (stateful ALUs). Their computations
are atomic in that any update to state within an ALU is
visible to the next packet arriving at that ALU a clock
cycle later. Our simulator allows us to experiment with
a variety of simulated switch hardware by specifying
different stateful and stateless ALUs with different sets
of operations, represented by ALU opcodes. Operands
to stateless and stateful ALUs can be PHV containers,
immediate operands, or switch state; this choice is de-
termined by an input mux (Figure 2). A stateless ALU’s
output is written into the PHV container designated
for that stateless ALU. A stateful ALU’s output can be
routed into any container; this choice is determined
by an output mux. Table 1 summarizes the hardware
configurations in our simulator. These are the configu-
rations that need to be populated by any code generator,
whether based on classical compiler optimizations or
program synthesis.

2.3 Program synthesis using SKETCH
We use the SKETCH program synthesizer for developing
Chipmunk. We briefly describe SKETCH’s internals here;
[57] has more details. SKETCH is given as inputs a spec-
ification to satisfy and a partial program (the sketch)
(Figure 1). We consider both the specification and the

Initialize X to
random inputs

Verify hole assignment
on all inputs !(X ⊆ Y)

Synthesize holes that
work for inputs #

Hole Assignment

Counterexample Input c

Failure

Add c to X

Success

No CounterexamplesNo Hole Assignment

Figure 3: The CEGIS algorithm for synthesis.

sketch to be functions from a switch state and a packet
to a new switch state and a packet [26, 56]. Let x be an
n-bit vector representing all inputs to both the speci-
fication S and the partial program P . The task of the
synthesizer is to determine values of all the holes in P
such that the results of executing the specification and
the sketch on an input x , S(x) and P(x), are the same
for all x . Let c be anm-bit vector representing all holes
that need to be determined (or “filled in”) by SKETCH to
complete the sketch. For example, in Figure 1,m = 2
and n = 5, the default width of integer inputs in SKETCH.
Then, the program synthesis problem solves for c in the
following formula in first-order logic [59]:

∃c ∈ {0, 1}m ,∀x ∈ {0, 1}n : S(x) = P(x , c) (1)

Equation 1 is an instance of the quantified boolean
formula problem (QBF) [16]. QBF is a generalization
of boolean satisfiability (SAT) that allows multiple ∀
and ∃ quantifiers; SAT implicitly supports a single ∀
or ∃. While QBF solvers exist [4, 8], they are not op-
timized for the QBF instances found in program syn-
thesis [57]. Hence, SKETCH uses an algorithm called
counterexample-guided inductive synthesis (CEGIS) [58,
59], designed to work efficiently for the QBF instances
found in program synthesis.
CEGIS (Figure 3) exploits the bounded observation

hypothesis: for typical specifications, there are a small
number of representative inputs that form a “perfect test
suite,” i.e., if the specification and the completed sketch
agree on this test suite, then they agree on all inputs.
To exploit this hypothesis, CEGIS repeatedly alternates
between two phases: (1) synthesizing on a small set of
concrete test inputs and (2) verifying that the completed
sketch matches the specification on all possible inputs.
A failed verification generates a counterexample that
is added to the set of concrete test inputs, and a fresh
iteration of synthesis+verification follows. CEGIS ter-
minates when either the verification phase succeeds or
the synthesis phase fails, i.e., there is no way to find
values for the holes that allow P and S to match on the
concrete test input set.
The synthesis phase of CEGIS is represented by the

following formula. Here x1,x2, . . . xk are the current set
of concrete test inputs:

∃c ∈ {0, 1}m : S(x1) = P(x1, c) ∧ . . . S(xk) = P(xk , c) (2)

Container 1

Container 2

Container 3

Container 4

Container 1

Container 2

Container 3

Container 4

Field 1

Field 2

Field 3

Field 4

Field 1

Field 2

Field 3

Field 4

Indicator-variable allocation Canonical allocation

Figure 4: An indicator-variable allocation can be
transformed into a canonical allocation.

The verification phase is represented by the following
formula. Here, c∗ is the hole solution being verified:

∀x ∈ {0, 1}n : S(x) = P(x , c∗) (3)

Both the synthesis and verification phases of CEGIS
are simpler than solving Equation 1 directly as a QBF
problem. This is because each phase fixes either the test
inputs (synthesis) or holes (verification) to concrete val-
ues, which turns the resulting subproblem into a SAT
problem, which can be fed to a more efficient SAT (in-
stead of QBF) solver.

3 CODE GENERATION FOR PIPELINES
We use SKETCH to build Chipmunk, a PISA code gener-
ator that robustly fits packet-processing programs to
switch pipelines regardless of how a developer might
express her specific program (§1).We describe howChip-
munk synthesizes the hardware configurations of the
simulator (Table 1) to implement the Domino program
supplied to Chipmunk. While we developed Chipmunk
for switch pipelines, we believe Chipmunk’s techniques
are also applicable to similar NIC pipelines [40].

3.1 The Chipmunk code generator
In addition to a Domino program, Chipmunk takes as
arguments the number of stages in the pipeline, the
pipeline width, and a specification of the input-output
behavior of the stateful and stateless ALUs. Given these
arguments, Chipmunk generates a sketch correspond-
ing to the functionality of the switch data path (Figure 2)
and then invokes SKETCH to solve it. Appendix A con-
tains a simplified version of this generated sketch. The
specification for the sketch is the packet transaction; the
holes are various hardware configurations (Table 1). We
now describe how Chipmunk sets up and then solves
the synthesis problem for SKETCH to generate the set of
hardware configurations.
Allocating packet fields to PHV containers. Packet
fields in the program need to be allocated to PHV con-
tainers in the hardware. There are natural constraints
on this allocation: each packet field is assigned to ex-
actly one container and each container is assigned to at
most one packet field. We use indicator variable holes to
represent these allocations, e.g., I [f , c] tracks if field f
is stored in container c over the entire pipeline. SKETCH
solves for the indicator variable holes while respecting

the allocation constraints, which are expressed as SKETCH
assertions. Currently, Chipmunk assigns one packet field
to one fixed container over the entire pipeline, limiting
the total number of packet fields in the program to at
most the number of containers, and excluding the pos-
sibility of reusing the same container to store different
packet fields in different pipeline stages. We plan to
address this restriction in future work.

We can reduce the number of indicator variables and
speed up synthesis by exploiting symmetry in the com-
mon case of homogeneous grids, where the same stateful
and stateless ALU types are repeated across the 2D grid,
and each ALU can access the same set of operands using
its input muxes. To exploit symmetry, we apply the idea
of canonicalization [27] and rename program fields to a
canonical set f1, f2, . . . , fm . We then map f1 to container
1, f2 to container 2, etc. Intuitively, any allocation can
be changed into a canonicalized one by renumbering
containers (Figure 4); hence there is no loss of expres-
siveness by forcing a canonical allocation.
Allocating state variables to stateful ALUs. State vari-
ables from the input specification should be assigned
to specific stateful ALUs in the hardware. The indica-
tor variable holes I [s,x ,y] track if state variable s is
assigned to stateful ALU x in stage y. Similar to allocat-
ing packet fields, we exploit symmetry in homogeneous
grids, and canonicalize the state variables in the pro-
gram to s1, s2, . . . , sn . Hence, variable si is allocated to
stateful ALU i within a stage. However, there is an im-
portant wrinkle: SKETCH still needs to determine which
stage a state variable si must be allocated to, due to de-
pendencies between state variables, i.e., if an update to
state variable si depends on the value of sj , sj must be
allocated to a stage that is earlier than that of si .
Allocating opcodes and mux controls for ALUs. We use
SKETCH holes to represent the opcode used by each ALU
and the mux controls. The size of opcode holes depends
on the number of operations supported by an ALU. The
size of mux holes depends on the number of PHV con-
tainers (the pipeline width). In experiments, we find that
constraining opcode holes to take on fewer values than
the hardware allows can sometimes speed up synthesis
(e.g., by only considering arithmetic ALU opcodes), pro-
vided the program can be fully expressed using those
opcodes. However, at other times, such constraints in-
crease synthesis time if the program requires the full
expressiveness of the hardware, causing synthesis to fail.
We are designing heuristics to balance both possibilities.
Scaling Chipmunk to a large number of input bits.
Once Chipmunk sets up the sketch to synthesize hard-
ware configurations (Table 1), SKETCH’s problem can be
stated as: find an assignment of values to all holes so

that the sketch and the specification have the same out-
put (new switch state and new packet) for all possible
inputs (initial values of switch state and the old packet).
To solve this problem, SKETCH uses the CEGIS algo-

rithm described earlier. However, SKETCH limits the range
of inputs to speed up synthesis. By default, SKETCH only
searches over all 5-bit integers for each scalar input.
Hence, it is possible that the hole assignment returned
by SKETCH fails to work over larger input ranges, say 32-
bit packet fields. To scale SKETCH to larger input ranges,
we decouple the input ranges for synthesis and verifica-
tion (an idea proposed in prior work [24, 39]) and use a
theorem prover to scale verification tomuch larger input
ranges. Specifically, we implement our own “outer-loop”
version of CEGIS with SKETCH as the inner synthesis
component: we first use SKETCH to find hole assignments
over a small input range, and then use the Z3 theorem
prover [20] to verify that these assignments are correct
for all inputs over a larger range (currently 10-bit in-
tegers). If Z3 finds a counterexample, we rerun SKETCH

by using the counterexample as an additional concrete
input on which the specification and sketch must agree,
in addition to SKETCH’s own small input range.
Limitations. First, Chipmunk’s support for immediate
ALU operands is preliminary because SKETCH cannot
synthesize large constants quickly. Hence, we restrict
the size of immediate operands; we plan to fix this by
leveraging theory-based constant synthesis proposed
in recent work [22]. Second, running Chipmunk on a
real switch such as Tofino [14] requires translating Chip-
munk’s holes to low-level switch configurations that can
be accepted by the Tofino compiler. We are currently
designing such a translator.

4 EVALUATION
We compare Chipmunk against the current Domino
code generator [56]. The Domino code generator is
based largely on classical compiler techniques that use
rewrite rules on the abstract syntax tree of the program,
e.g., branch elimination and data flow analysis.1 For
benchmarks, we pick a set of test programs drawn from
several sources [45, 55, 56]. We then generate code using
both Domino and Chipmunk. For a given program and
code generator, we measured code generation quality
using two metrics: (1) whether the code generator can
actually generate code for the program and (2) if it can,
the number of stages and the maximum number of ALUs
per stage used by the generated code.
Test programs and ALUs. We started with 8 programs
drawn from multiple sources [45, 55, 56]. Because these
programs were previously compiled with Domino, they

1Domino does use synthesis in a limited form after much preprocess-
ing, but for engineering expediency rather than for code optimization.

Programs Chipmunk Domino Chipmunk
time (sec)

RCP [63] 100 % 100% 17.7
Stateful Firewall [26] 100 % 90 % 2295
Sampling [56] 100% 0% 7.3
BLUE (increase) [35] 100% 0% 10.7
BLUE (decrease) [35] 100% 0% 52.5
Flowlet switching [54] 70% 100% 3648
Detecting new
flows [45]

100% 0% 7.7

Detecting flow reorder-
ing [45]

100% 0% 8.3

Table 2: Code generation rate and time for Chip-
munk and Domino

were written to ensure successful code generation with
Domino. Hence, to compare Domino and Chipmunk, we
mutated these programs in semantic-preserving ways
to generate 10 mutations of each of the 8 programs. In
theory, both Domino and Chipmunk should be able to
successfully generate code for all these mutations be-
cause Domino could generate code for the original 8
programs. For each of the mutations, we used the state-
ful ALU that was used to generate code for the original
program. For the stateless ALU, we developed a state-
less ALU based on Banzai’s stateless ALU [56], which
supports arithmetic, boolean, relational, and conditional
operators, similar to RMT.
Results. We supply the 8*10=80 mutations to both
Domino and Chipmunk. We report the fraction of
the mutations of each of the 8 original programs that
Domino and Chipmunk can successfully generate code
for (Table 2). On this metric, Chipmunk is significantly
better. Domino fails to generate code for most muta-
tions of the original programs because it incorrectly
concludes that the programs are too expressive to be
implemented using the pipeline’s ALUs. Chipmunk’s
code generation rate is close to 100%. This is expected
because Domino can generate code for the original pro-
grams; hence, in theory we should be able to generate
code for any semantic-preserving mutations of the orig-
inals. In one case (flowlet switching), Chipmunk does
not successfully generate code for all mutations. This
was because Chipmunk’s code generation times are vari-
able and sometimes exceeded our timeout (Table 2). In-
creasing our timeout causes Chipmunk to successfully
generate code for several failed programs.
When both Domino and Chipmunk are successful,

we find that Chipmunk significantly reduces the num-
ber of pipeline stages required to fit the program (Fig-
ure 5). Such improvements are significant because pro-
grammable hardware pipelines are severely constrained
on the number of pipeline stages, e.g., Tofino has 12
stages [2]. Chipmunk’s output is comparable to and

Figure 5: Resources used by Chipmunk, Domino.

sometimes worse than Domino on the maximum num-
ber of ALUs per stage, which is more abundant (e.g.,
RMT has around 200 per stage [32]). Domino’s resource
usage also has more variability across mutations (shown
by the error bars) than Chipmunk, which has no vari-
ability. Chipmunk’s main drawback relative to Domino
(which generates code in a few seconds) is higher and
more variable code generation time (Table 2).

5 FUTUREWORK
5.1 Synthesizing Fast Processor Code
Several processor-based2 packet-processing substrates
have emerged just in the last few years, such as the
eXpress Data Path (XDP [21]), DPDK [5], and SoC-based
SmartNICs [7, 9]. On these substrates, it is desirable for
programs to run with the highest throughput (i.e., NIC
line rate) and least packet-processing latency possible.
However, it is challenging to tune performance, since
it depends on complex factors such as the layout of
data structures, memory access patterns, and low-level
assembly instructions emitted by compilers.

Program synthesis in the form of superoptimizing com-
pilation [27, 41, 46, 47, 51] has the potential to better this
situation. Unlike a standard optimizing compiler that
performs local program transformations to improve per-
formance, a superoptimizing compiler searches over the
space of instruction sequences to attempt to find an
optimal sequence of instructions (according to a stated
objective function such as minimum instruction count)
implementing the entire input program. The main caveat
is that input programs today are restricted to at most a
few hundred instructions; on such programs, superopti-
mizing compilers have been reported to produce code
with performance that beats gcc -O3 output [47, 51].
Research Questions. Existing superoptimizing compil-
ers use very simple performance models (e.g., number
of instructions) to optimize programs running on one
processor core. Yet, they take significant amounts of
time to emit code. Can we enhance superoptimizers to
generate code that runs on multi-core SmartNIC plat-
forms? Can we effectively incorporate memory access
costs, patterns, and data layouts? Can compilation scale

2We include both multicore SoC SmartNICs and end hosts.

to reasonable-size network programs and run within
a reasonable time? Can we formulate an intermediate
representation like LLVM to support multiple SmartNIC
ISAs for superoptimization?

5.2 Approximate Program Synthesis
There are many situations where data plane resources
are heavily constrained, necessitating approximate—but
fast—packet processing. Examples include sampled sta-
tistics, measurement sketches that trade off counter ac-
curacy for line-rate performance and reduced memory,
and multi-tenant scenarios where it is essential to pack
as many network programs as possible into the switch
or NIC [44]. Each such situation today requires devel-
oping a custom approach to trade accuracy for resource
savings or high performance.
Program synthesis can provide a general method to

reduce program resource usage through approximation.
Approximate compilers [34, 43, 50, 52] already exist to
target hardware with instructions that reduce energy.
Recently, a more general approximate program synthe-
sis framework [29, 30] has emerged. This framework
has been used to improve the performance of some pro-
grams by an order of magnitude [29] while producing
approximate results with bounded errors.
Research Questions. Network programs are typically
written as functions over a single packet, e.g., in P4. How
should one synthesize network programs with bounded
inaccuracy over a packet trace, rather than just a single
packet? How should we address resource constraints
like memory usage, which depends on the workload
(e.g., number of flows) and not just the program? Given a
library of high-performance primitives such as counting,
hashing, etc., is it possible to synthesize measurement
sketches (e.g., count-min sketch) that capture a statistic
with guaranteed memory-accuracy tradeoffs?

5.3 Synthesizing Program Repairs
Developers of packet processing programs frequently
need to troubleshoot correctness, security, and per-
formance issues with their software. While it is im-
possible to remove the need for human insight from
troubleshooting, we believe it is beneficial to gener-
ate human-interpretable repair hints automatically. Yet,
there are few avenues today to provide such hints to
ease the troubleshooting process.

Small, localized rewrites of the program source code
can serve as useful hints to fix many issues. Examples
include suggesting edits to a program to fit it into a
switch pipeline, rewrites for offending eBPF program
code to move past eBPF verification errors [1, 18], and
hints to rewrite “hot” code regions of a DPDK program
to improve its performance.

Research Questions. Is it possible to generate local
rewrites to fit a problematic network program into a
packet-processing pipeline? Can we speed up a slow
network program by replacing hot code regions with
fast implementations using a database of localized code
rewrites [27]? Can program synthesis replace unsafe
data flows in an eBPF program with safe ones without
drastically changing the whole program? It may often
be necessary to change the semantics of a program to
fix an issue. Can we develop a domain-specific measure
of the semantic distance between the rewritten program
and the original one? How should a synthesizer use such
a measure when suggesting rewrites?

6 RELATEDWORK
Program synthesis has been applied to several areas
of networking: synthesis of network updates [42, 49],
synthesis of routing table configurations from poli-
cies [33, 61], the inverse problem of synthesis of poli-
cies from configuration [28], and synthesis of control
planes [62]. These efforts target synthesis of network-
wide policies and configurations, where the policies and
configurations pertain to reachability, isolation, and ac-
cess control. We apply program synthesis to the prob-
lem of generating per-device low-level hardware-specific
code (e.g., assembly, Verilog, microcode, or FPGA bit-
streams) from higher level imperative specifications of
packet-processing algorithms.

7 CONCLUSION
Writing fast packet-processing code for programmable
network substrates is challenging, and today is best left
to experts who deeply understand the underlying hard-
ware. Instead, we propose the use of program synthesis
to automatically generate fast packet-processing code.
Our initial results are very encouraging. We hope they
prompt further research on synthesis-based code gener-
ators for programmable network substrates.

ACKNOWLEDGMENTS
We thank Alvin Cheung for many insightful discussions
on program synthesis. Armando Solar-Lezama very gen-
erously answered several questions on the SKETCH mail-
ing list. Amy Ousterhout, Mina Tahmasbi Arashloo, Vib-
haalakshmi Sivaraman, Jennifer Rexford, Michael Wal-
fish, Aurojit Panda, Ravi Netravali, Suvinay Subrama-
nian, Deep Ghosh, and Sharad Chole provided several
useful comments on drafts of this paper. The anony-
mous HotNets reviewers provided many constructive
comments that improved the paper’s presentation.

REFERENCES
[1] An eBPF overview, part 1: Introduction. https:

//www.collabora.com/news-and-blog/blog/2019/04/05/

https://www.collabora.com/news-and-blog/blog/2019/04/05/an-ebpf-overview-part-1-introduction/
https://www.collabora.com/news-and-blog/blog/2019/04/05/an-ebpf-overview-part-1-introduction/

an-ebpf-overview-part-1-introduction/.
[2] Arista 7170 Multi-function Programmable Networking.

https://www.arista.com/assets/data/pdf/Whitepapers/7170_
White_Paper.pdf.

[3] Concurrency Model for P4. https://github.com/p4lang/p4-spec/
issues/48.

[4] DepQBF Solver. http://lonsing.github.io/depqbf/.
[5] DPDK: Data Plane Development Kit. http://dpdk.org/.
[6] High-Capacity StrataXGS Trident 4 Ethernet Switch Series.

https://www.broadcom.com/products/ethernet-connectivity/
switching/strataxgs/bcm56880-series.

[7] LiquidIO II Smart NICs. https://www.marvell.com/
ethernet-adapters-and-controllers/liquidio-smart-nics/
index.jsp.

[8] MarkusRabe/cadet: A fast and certifying solver for quantified
Boolean formulas. https://github.com/MarkusRabe/cadet.

[9] Netronome Agilio SmartNICs. https://www.netronome.com/
products/smartnic/overview/.

[10] NPL Specification. https://github.com/nplang/NPL-Spec.
[11] P4 Studio | Barefoot. https://www.barefootnetworks.com/

products/brief-p4-studio/.
[12] P4_16 Language Specification. https://p4.org/p4-spec/docs/

P4-16-v1.1.0-spec.html.
[13] P4_16 Language Specification Concurrency Model. https://p4.

org/p4-spec/docs/P4-16-v1.1.0-spec.html#sec-concurrency.
[14] Product Brief Tofino Page | Barefoot. https://barefootnetworks.

com/products/brief-tofino/.
[15] Programming the Forwarding Plane - Nick McKeown. https:

//forum.stanford.edu/events/2016/slides/plenary/Nick.pdf.
[16] Quantified Boolean Formula. https://en.wikipedia.org/wiki/

True_quantified_Boolean_formula.
[17] Sketch Source Code. https://people.csail.mit.edu/asolar/sketch-1.

7.5.tar.gz.
[18] The art of writing eBPF programs: a primer.|Sysdig. https://

sysdig.com/blog/the-art-of-writing-ebpf-programs-a-primer/.
[19] The P4 Language Specification. https://p4.org/p4-spec/p4-14/v1.

0.5/tex/p4.pdf.
[20] The Z3 Theorem Prover. https://github.com/Z3Prover/z3.
[21] XDP - IO Visor Project. https://www.iovisor.org/technology/xdp.
[22] A. Abate, C. David, P. Kesseli, D. Kroening, and E. Polgreen.

Counterexample Guided Inductive Synthesis Modulo Theories.
In Computer Aided Verification, 2018.

[23] M. B. S. Ahmad and A. Cheung. Automatically Leveraging
MapReduce Frameworks for Data-Intensive Applications. In
SIGMOD, 2018.

[24] M. B. S. Ahmad and A. Cheung. Automatically Leveraging
MapReduce Frameworks for Data-Intensive Applications. In
SIGMOD, 2018.

[25] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa.
Syntax-guided synthesis. In 2013 Formal Methods in Computer-
Aided Design, 2013.

[26] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker.
SNAP: Stateful Network-Wide Abstractions for Packet Process-
ing. In SIGCOMM, 2016.

[27] S. Bansal and A. Aiken. Automatic Generation of Peephole
Superoptimizers. In ASPLOS, 2006.

[28] R. Birkner, D. D. Cohen, L. Vanbever, andM. Vechev. Config2Spec:
Mining Network Specifications from Network Configurations.
In NSDI, 2020.

[29] J. Bornholt, E. Torlak, L. Ceze, and D. Grossman. Approximate
Program Synthesis. In Workshop on Approximate Computing
Across the Stack, 2015.

[30] J. Bornholt, E. Torlak, D. Grossman, and L. Ceze. Optimizing
Synthesis with Metasketches. In POPL, 2016.

[31] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: Programming Protocol-independent Packet Processors. SIG-
COMM CCR, 2014.

[32] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz. Forwarding Metamorphosis:
Fast Programmable Match-action Processing in Hardware for
SDN. In SIGCOMM, 2013.

[33] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev. Net-
Complete: Practical Network-Wide Configuration Synthesis with
Autocompletion. In NSDI, 2018.

[34] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural
Acceleration for General-Purpose Approximate Programs. In
MICRO, 2012.

[35] W.-c. Feng, K. G. Shin, D. D. Kandlur, and D. Saha. The BLUE
Active Queue Management Algorithms. IEEE/ACM Transactions
on Networking, 2002.

[36] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh,
M. Andrewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung,
H. K. Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier,
N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel,
T. Sapre,M. Shaw, G. Silva,M. Sivakumar, N. Srivastava, A. Verma,
Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A. Maltz, and A. Green-
berg. Azure Accelerated Networking: SmartNICs in the Public
Cloud. In NSDI, 2018.

[37] S. Floyd and V. Jacobson. Random Early Detection Gateways for
Congestion Avoidance. IEEE/ACM Trans. Netw., Aug. 1993.

[38] S. Kamil, A. Cheung, S. Itzhaky, and A. Solar-Lezama. Verified
Lifting of Stencil Computations. In PLDI, 2016.

[39] S. Kamil, A. Cheung, S. Itzhaky, and A. Solar-Lezama. Verified
Lifting of Stencil Computations. In PLDI, 2016.

[40] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and A. Krish-
namurthy. High Performance Packet Processing with FlexNIC.
In ASPLOS, 2016.

[41] H. Massalin. Superoptimizer: A Look at the Smallest Program.
In ASPLOS, 1987.

[42] J. McClurg, H. Hojjat, P. Černý, and N. Foster. Efficient Synthesis
of Network Updates. In PLDI, 2015.

[43] S.Misailovic,M. Carbin, S. Achour, Z. Qi, andM. C. Rinard. Chisel:
Reliability- and Accuracy-aware Optimization of Approximate
Computational Kernels. In OOPSLA, 2014.

[44] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. DREAM: Dy-
namic Resource Allocation for Software-defined Measurement.
In SIGCOMM, 2014.

[45] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Al-
izadeh, V. Jeyakumar, and C. Kim. Language-Directed Hardware
Design for Network Performance Monitoring. In SIGCOMM,
2017.

[46] P. M. Phothilimthana, T. Jelvis, R. Shah, N. Totla, S. Chasins, and
R. Bodik. Chlorophyll: Synthesis-aided Compiler for Low-power
Spatial Architectures. In PLDI, 2014.

[47] P. M. Phothilimthana, A. Thakur, R. Bodik, and D. Dhurjati. Scal-
ing Up Superoptimization. In ASPLOS, 2016.

[48] A. D. Robison. Impact of Economics on Compiler Optimization.
In Proceedings of the 2001 Joint ACM-ISCOPE Conference on Java
Grande, 2001.

[49] S. Saha, S. Prabhu, and P. Madhusudan. NetGen: Synthesizing
Data-plane Configurations for Network Policies. In SOSR, 2015.

[50] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze,
and D. Grossman. EnerJ: Approximate Data Types for Safe and
General Low-power Computation. In PLDI, 2011.

[51] E. Schkufza, R. Sharma, and A. Aiken. Stochastic Superoptimiza-
tion. In ASPLOS, 2013.

[52] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Ri-
nard. Managing Performance vs. Accuracy Trade-offs with Loop

https://www.collabora.com/news-and-blog/blog/2019/04/05/an-ebpf-overview-part-1-introduction/
https://www.arista.com/assets/data/pdf/Whitepapers/7170_White_Paper.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/7170_White_Paper.pdf
https://github.com/p4lang/p4-spec/issues/48
https://github.com/p4lang/p4-spec/issues/48
http://lonsing.github.io/depqbf/
http://dpdk.org/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.marvell.com/ethernet-adapters-and-controllers/liquidio-smart-nics/index.jsp
https://www.marvell.com/ethernet-adapters-and-controllers/liquidio-smart-nics/index.jsp
https://www.marvell.com/ethernet-adapters-and-controllers/liquidio-smart-nics/index.jsp
https://github.com/MarkusRabe/cadet
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
https://github.com/nplang/NPL-Spec
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html#sec-concurrency
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html#sec-concurrency
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://forum.stanford.edu/events/2016/slides/plenary/Nick.pdf
https://forum.stanford.edu/events/2016/slides/plenary/Nick.pdf
https://en.wikipedia.org/wiki/True_quantified_Boolean_formula
https://en.wikipedia.org/wiki/True_quantified_Boolean_formula
https://people.csail.mit.edu/asolar/sketch-1.7.5.tar.gz
https://people.csail.mit.edu/asolar/sketch-1.7.5.tar.gz
https://sysdig.com/blog/the-art-of-writing-ebpf-programs-a-primer/
https://sysdig.com/blog/the-art-of-writing-ebpf-programs-a-primer/
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://github.com/Z3Prover/z3
https://www.iovisor.org/technology/xdp

Perforation. In ESEC/FSE, 2011.
[53] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated Feedback

Generation for Introductory Programming Assignments. In PLDI,
2013.

[54] S. Sinha, S. Kandula, and D. Katabi. Harnessing TCPs Burstiness
using Flowlet Switching. In HotNets, 2004.

[55] A. Sivaraman. Designing Fast and Programmable Routers. PhD
thesis, EECS Department, Massachusetts Institute of Technology,
September 2017.

[56] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Bal-
akrishnan, G. Varghese, N. McKeown, and S. Licking. Packet
Transactions: High-Level Programming for Line-Rate Switches.
In SIGCOMM, 2016.

[57] A. Solar Lezama. Program Synthesis By Sketching. PhD thesis,
EECS Department, University of California, Berkeley, Dec 2008.

[58] A. Solar-Lezama, C. G. Jones, and R. Bodik. Sketching Concurrent
Data Structures. In PLDI, 2008.

[59] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat.
Combinatorial Sketching for Finite Programs. In ASPLOS, 2006.

[60] H. Song. Protocol-oblivious Forwarding: Unleash the Power of
SDN Through a Future-proof Forwarding Plane. In Proceedings
of the Second ACM SIGCOMMWorkshop on Hot Topics in Software
Defined Networking, 2013.

[61] K. Subramanian, L. D’Antoni, and A. Akella. Genesis: Synthe-
sizing Forwarding Tables in Multi-tenant Networks. In POPL,
2017.

[62] K. Subramanian, L. D’Antoni, and A. Akella. Synthesis of fault-
tolerant distributed router configurations. Proc. ACM Meas. Anal.
Comput. Syst., Apr. 2018.

[63] C. Tai, J. Zhu, and N. Dukkipati. Making Large Scale Deployment
of RCP Practical for Real Networks. In INFOCOM, 2008.

[64] E. Torlak and R. Bodik. Growing Solver-aided Languages with
Rosette. In Proceedings of the 2013 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming &
Software, 2013.

A APPENDIX
This appendix presents a simplified version of the sketch generated by Chipmunk for a 2-by-2 grid (Figure 2) and a
simple spec. We use . . .wherever appropriate to signify that the code is similar to code presented before. The full
sketch is available here: https://gist.github.com/XiangyuG/1f009d812151f966b93c1fbf65bc0a69
// num_pipeline_stages = 2
// num_alus_per_stage = 2 (2 stateless ALUs + 2 stateful ALUs)
// num_phv_containers = 2
// imux stands for input mux; omux for output mux
int stateless_alu_0_0_imux1_ctrl= ??(1); int stateless_alu_0_1_imux1_ctrl= ??(1);
int stateless_alu_0_0_imux2_ctrl= ??(1); int stateless_alu_0_1_imux2_ctrl= ??(1);
int stateless_alu_0_0_immediate= ??(2); int stateless_alu_0_1_immediate= ??(2);
int stateless_alu_0_0_opcode= ??(2); int stateless_alu_0_1_opcode= ??(2);
int stateful_alu_0_0_mode_global= ??(1); int stateful_alu_0_1_mode_global= ??(1);
int stateful_alu_0_0_const_0_global= ??(2); int stateful_alu_0_1_const_0_global= ??(2);
int stateless_alu_1_0_imux1_ctrl= ??(1); int stateless_alu_1_1_imux1_ctrl= ??(1);
int stateless_alu_1_0_imux2_ctrl= ??(1); int stateless_alu_1_1_imux2_ctrl= ??(1);
int stateless_alu_1_0_immediate= ??(2); int stateless_alu_1_1_immediate= ??(2);
int stateless_alu_1_0_opcode= ??(2); int stateless_alu_1_1_opcode= ??(2);
int stateful_alu_1_0_mode_global= ??(1); int stateful_alu_1_1_mode_global= ??(1);
int stateful_alu_1_0_const_0_global= ??(2); int stateful_alu_1_1_const_0_global= ??(2);
int stateful_alu_0_0_imux_ctrl= ??(1); int stateful_alu_0_1_imux_ctrl= ??(1);
int stateful_alu_1_0_imux_ctrl= ??(1); int stateful_alu_1_1_imux_ctrl= ??(1);
int omux_phv_0_0_ctrl= ??(2); int omux_phv_0_1_ctrl= ??(2);
int omux_phv_1_0_ctrl= ??(2); int omux_phv_1_1_ctrl= ??(2);
int salu_active_0_0= ??(1); int salu_active_0_1= ??(1);
int salu_active_1_0= ??(1); int salu_active_1_1= ??(1);

// Definitions of muxes and ALUs of the switch pipeline
// Input mux for each ALU
int stateful_alu_imux_0_0(int input0,int input1, int stateful_alu_0_0_imux_ctrl_local) {

if (stateful_alu_0_0_imux_ctrl_local == 0) { return input0;}
else { return input1; }

}
int stateful_alu_imux_0_1(int input0,int input1, int stateful_alu_0_1_imux_ctrl_local) {...}
int stateful_alu_imux_1_0(int input0,int input1, int stateful_alu_1_0_imux_ctrl_local) {...}
int stateful_alu_imux_1_1(int input0,int input1, int stateful_alu_1_1_imux_ctrl_local) {...}
// Output mux for each PHV container
int omux_phv_0_0(int input0,int input1,int input2,int omux_phv_0_0_ctrl_local) {

if (omux_phv_0_0_ctrl_local == 0) {return input0;}
else if (omux_phv_0_0_ctrl_local == 1) {return input1;}
else {return input2;}

}
int omux_phv_0_1(int input0,int input1,int input2,int omux_phv_0_1_ctrl_local) {...}
int omux_phv_1_0(int input0,int input1,int input2,int omux_phv_1_0_ctrl_local) {...}
int omux_phv_1_1(int input0,int input1,int input2,int omux_phv_1_1_ctrl_local) {...}
// Definition of ALUs
int stateless_alu_0_0_mux1(int input0,int input1, int stateless_alu_0_0_imux1_ctrl_local) {

if (stateless_alu_0_0_imux1_ctrl_local == 0) { return input0;}
else { return input1; }

}
int stateless_alu_0_0_mux2(int input0,int input1, int stateless_alu_0_0_imux2_ctrl_local) {...}
int stateless_alu_0_0(int input0,int input1,int opcode,int immediate,int imux1_ctrl_hole_local,int imux2_ctrl_hole_local) {

int pkt_0 = stateless_alu_0_0_mux1(input0,input1,imux1_ctrl_hole_local);
int pkt_1 = stateless_alu_0_0_mux2(input0,input1,imux2_ctrl_hole_local);
if (opcode==0) { return pkt_0+pkt_1;}
else if (opcode==1) { return pkt_0-pkt_1;}
else if (opcode==2) { return pkt_0+immediate;}
else { return pkt_0-immediate;}

}
int stateless_alu_0_1_mux1(int input0,int input1, int stateless_alu_0_1_imux1_ctrl_local) {...}
int stateless_alu_0_1_mux2(int input0,int input1, int stateless_alu_0_1_imux2_ctrl_local) {...}
int stateless_alu_0_1(int input0,int input1,int opcode,int immediate,int imux1_ctrl_hole_local,int imux2_ctrl_hole_local) {...}
int stateful_alu_0_0_Mode(int input0,int input1,int mode) {

if (mode == 0) {return input0;}
else {return input1;}

}
int stateful_alu_0_0(ref int state_0, int pkt_0, int mode, int const_0) {

int old_state_0 = state_0;
state_0 = stateful_alu_0_0_Mode(state_0 + const_0, pkt_0, mode);
return old_state_0;

}
int stateful_alu_0_1_Mode(int input0,int input1,int mode) {...}
int stateful_alu_0_1(ref int state_0, int pkt_0, int mode, int const_0) {...}
int stateful_alu_1_0_Mode(int input0,int input1,int mode) {...}
int stateful_alu_1_0(ref int state_0, int pkt_0, int mode, int const_0) {...}
int stateful_alu_1_1_Mode(int input0,int input1,int mode) {...}
int stateful_alu_1_1(ref int state_0, int pkt_0, int mode, int const_0) {...}

https://gist.github.com/XiangyuG/1f009d812151f966b93c1fbf65bc0a69

// Data type for holding result from spec and implementation
struct StateAndPacket {

int pkt_0;
int state_0;
int state_1;

}

// Specification
|StateAndPacket| program(|StateAndPacket| state_and_packet) {

state_and_packet.pkt_0 = 1 + state_and_packet.state_0;
state_and_packet.state_1 = state_and_packet.state_0;
return state_and_packet;

}

// Implementation
|StateAndPacket| pipeline (|StateAndPacket| state_and_packet) {

// Constraints to allocate state variables to stateful ALUs
assert((salu_active_0_0 + salu_active_0_1 + 0) <= 2);
assert((salu_active_1_0 + salu_active_1_1 + 0) <= 2);
assert((salu_active_0_0 + salu_active_1_0 + 0) <= 1);
assert((salu_active_0_1 + salu_active_1_1 + 0) <= 1);
// Container i will be allocated to packet field i from the spec (canonical allocation).
int input_0_0 = 0;
int input_0_1 = 0;
// One variable for each stateful ALU's state operand
// This will be allocated to a state variable from the program using the salu_active indicator variables above.
int state_operand_salu_0_0 = 0;
int state_operand_salu_0_1 = 0;
int state_operand_salu_1_0 = 0;
int state_operand_salu_1_1 = 0;
/*********** Stage 0 *********/
// Read each PHV container from corresponding packet field.
input_0_0 = state_and_packet.pkt_0;
// Stateless ALUs
int destination_0_0 = stateless_alu_0_0(input_0_0,input_0_1,stateless_alu_0_0_opcode,stateless_alu_0_0_immediate,

stateless_alu_0_0_imux1_ctrl,stateless_alu_0_0_imux2_ctrl);
int destination_0_1 = stateless_alu_0_1(...);
// Stateful operands
int packet_operand_salu0_0_0 = stateful_alu_imux_0_0(input_0_0,input_0_1,stateful_alu_0_0_imux_ctrl);
int packet_operand_salu0_1_0 = stateful_alu_imux_0_1(...);
// Read stateful ALU slots from allocated state vars.
if (salu_active_0_0 == 1) {

state_operand_salu_0_0 = state_and_packet.state_0;
}
if (salu_active_0_1 == 1) {...}
// Stateful ALUs
int state_alu_output_0_0 = stateful_alu_0_0(state_operand_salu_0_0,packet_operand_salu0_0_0,

stateful_alu_0_0_mode_global,stateful_alu_0_0_const_0_global);
int state_alu_output_0_1 = stateful_alu_0_1(...);
// Outputs
int output_0_0 = omux_phv_0_0(state_alu_output_0_0,state_alu_output_0_1,destination_0_0,omux_phv_0_0_ctrl);
int output_0_1 = omux_phv_0_1(state_alu_output_0_0,state_alu_output_0_1,destination_0_1,omux_phv_0_1_ctrl);
// Write state_0
if (salu_active_0_0 == 1) { state_and_packet.state_0 = state_operand_salu_0_0;}
// Write state_1
if (salu_active_0_1 == 1) { state_and_packet.state_1 = state_operand_salu_0_1;}
/*********** Stage 1 *********/
// Input of this stage is the output of the previous one.
int input_1_0 = output_0_0;
int input_1_1 = output_0_1;
...
// Write pkt_0 at the end of the pipeline.
state_and_packet.pkt_0 = output_1_0;
// Return updated packet fields and state vars
return state_and_packet;

}

// Main sketch routine that asserts equivalence of pipeline and spec
harness void main(int pkt_0, int state_0, int state_1) {

|StateAndPacket| x = |StateAndPacket|(pkt_0 = pkt_0,state_0 = state_0,state_1 = state_1);
|StateAndPacket| pipeline_result = pipeline(x);
|StateAndPacket| program_result = program(x);
assert(pipeline_result.state_0 == program_result.state_0);
assert(pipeline_result.state_1 == program_result.state_1);
assert(pipeline_result.pkt_0 == program_result.pkt_0);

}

	Abstract
	1 Introduction
	2 Background
	2.1 Programming language
	2.2 Hardware architecture
	2.3 Program synthesis using SKETCH

	3 Code generation for pipelines
	3.1 The Chipmunk code generator

	4 Evaluation
	5 Future Work
	5.1 Synthesizing Fast Processor Code
	5.2 Approximate Program Synthesis
	5.3 Synthesizing Program Repairs

	6 Related work
	7 Conclusion
	References
	A Appendix

