PiPER: Towards Flexible Pipeline Parallelism for PyTorch

Megan Frisella, Arvin Oentoro, Xiangyu Gao, Gilbert Bernstein, Stephanie Wang
University of Washington

Abstract

With the rise of increasingly large-scale ML systems, distributed
execution across multiple devices is critical for efficient training
and inference. Current ML systems have adopted pipeline-parallel
distributed execution strategies to improve resource efficiency, but
lack generality in the models and execution schedules they sup-
port. We designed and prototyped PIPER, a compiler that automates
pipeline-parallel execution for arbitrary PyTorch models and cus-
tom execution schedules. We present preliminary performance
results that compare with existing state-of-the-art pipeline paral-
lelism frameworks pipelining Llama and CLIP models, while aiming
to support a wider range of PyTorch models and pipeline-parallel
execution schedules.

ACM Reference Format:

Megan Frisella, Arvin Oentoro, Xiangyu Gao, Gilbert Bernstein, Stephanie
Wang . 2025. P1pEr: Towards Flexible Pipeline Parallelism for PyTorch.
In Practical Adoption Challenges of ML for Systems (PACMI °25), October
13-16, 2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3766882.3767187

1 Introduction

Distributed execution is a key factor enabling efficient training and
inference in today’s ML systems. Strategies for distributing ML
models are becoming increasingly complex. 4D parallelism, with
pipeline, data, tensor, and context parallel dimensions, is popular
for training and has many varieties in each dimension (3, 5-7, 15].
Pipeline parallelism [3] enables training large models by splitting
them into stages across devices (Figure 2) and maximizing hardware
utilization by concurrently processing different microbatches of
data on different devices. However it is not frequently adopted due
to its implementation complexity. There are two main challenges
to implementing pipeline parallelism.

First, pipeline parallelism is difficult to adopt compared to other
parallelism strategies because there are many possible execution
schedules. Execution schedules define where and when forward
and backward computations execute. For example, GPipe [3] sched-
ules all the forward stages then all the backward stages. 1F1B [9]
schedules the backward stages for each microbatch as soon as
possible, requiring less memory to store intermediate activations.
Research exploring execution schedules that balance tradeoffs be-
tween throughput, latency and memory remains important as new
models with new execution characteristics emerge (2, 3, 9, 11]. How-
ever, implementing any one schedule takes significant care to get
right; the timing and ordering of operations must be synchronized

This work is licensed under a Creative Commons Attribution 4.0 International License.
PACMI °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2205-9/25/10

https://doi.org/10.1145/3766882.3767187

GPUO% 01]2]3 _
(a) GPipe

GPU 1 0|1 [2]3s

cruo U [o P11 El2]]33 @ 1F1B

crut | [l o I 1 P2 [3

time — forward [l backward
Figure 1: Two different pipeline-parallel execution schedules for a
2-stage model. Numbers identify data microbatches.

fstage 0 stage 1
tokens|—>| [Tayers |I layers |I —>| logits
g-s 9¥15
stage 0
image—>{[im
el
—_—
stage 1
text —>{[text
J
—_—

Figure 2: Pipeline stage dependencies for Llama and CLIP. Llama
has linear dependencies while CLIP has a dependency DAG.

(a) Llama

stage 2 |[—| logits (b) CLIP

to respect the temporal dependencies of the execution schedule and
the data dependencies of the model pipeline without introducing
unnecessary pipeline bubbles (white space in Figure 1).

Second, pipeline parallelism is difficult to apply automatically to
arbitrary PyTorch models because it is not always possible to stati-
cally determine the flow of data through the model. For example, it
is impossible to analyze the behavior of data-dependent operations
(e.g., data-dependent control flow) before running a model. Auto-
matically partitioning a model requires understanding the model’s
data flow in order to identify the dependencies between pipeline
stages and route data through the stages accordingly. This is dif-
ferent from other parallelism techniques that are not concerned
with partitioning the overall data flow (e.g., data parallelism repli-
cates the whole model across devices and tensor parallelism splits
individual operations across devices).

Existing state-of-the-art frameworks have adopted pipeline par-
allelism but fail to achieve generality in the models and execution
schedules they support. Megatron-LM [15] offers high-performance
pipeline parallelism for a select set of transformer models and only
two execution schedules. Pipeline Parallelism for PyTorch [6, 14]
(PiPPy), automatically pipelines PyTorch models that have static
computation graphs (excluding popular architectures like MoE),
and requires additional user effort to support other models. PiPPy
requires significant user effort to encode custom execution sched-
ules. Current frameworks also do not support models with DAG
pipeline dependencies, like CLIP [12] in Figure 2b.

We seek to build a framework that automatically pipelines arbi-
trary PyTorch models, gives the user full control over the execu-
tion schedule without the burden and error-proneness of low-level
coordination, and achieves performance parity with equivalent ex-
ecution strategies on state-of-the-art frameworks. To achieve these
goals, we design and prototype PIPER, a compiler that translates

https://doi.org/10.1145/3766882.3767187
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3766882.3767187

PACMI ’25, October 13-16, 2025, Seoul, Republic of Korea

PyTorch models into functionally equivalent distributed programs.
We use a combination of just-in-time compilation and eager (in-
terpreted) execution to support models whose data flow cannot be
fully analyzed ahead of time. We use a centralized coordinator to
enable flexible scheduling that can be modified with low user effort.
However, centralization introduces synchronization points and lim-
its how much the CPU can run ahead of the GPU on distributed
devices. We apply optimizations to communication operations to
mitigate these overheads. Thus, PIPER:

o Automatically coordinates user-defined pipeline-parallel execu-
tion schedules that are easy to specify, and guarantees that user-
defined schedules are valid respect the pipeline’s data dependen-
cies.

o Partitions arbitrary PyTorch models according to user annota-
tions.

o Achieves competitive preliminary performance with state-of-the-
art frameworks pipelining the Llama and CLIP models.

2 Related Work

2.1 Pipeline-Parallel Execution Schedules

There has been extensive research into developing pipeline-parallel
execution schedules that balance throughput, latency, and memory
for different model architectures. GPipe [3] processes forward and
backward computations sequentially, incurring a large pipeline
bubble. 1F1B [9] reduces intermediate activation lifetime compared
to GPipe by scheduling backward computations right after forward
computations. Interleaved 1F1B [10] interleaves the execution of
multiple “virtual” stages to increase utilization by overlapping mul-
tiple forward-backward streams. ZeroBubble [11] improves 1F1B by
decoupling backward logic into two phases to fill in pipeline bubbles.
DualPipe [2] duplicates each layer so that it can feed microbatches
into both ends of the pipeline and overlaps communication with
computation to hide the all-to-all operations of expert parallelism
in MoE transformer models.

2.2 Training Frameworks

Megatron-LM The Megatron-LM [15] framework for LLM training
hard-codes pipeline parallel support for a select set of models and
offers two execution schedules (1F1B [9] and interleaved 1F1B [10]),
trading off generality for high performance. Megatron-LM does not
support many popular non-transformer models like StableDiffusion
or multi-modal models like CLIP.

DeepSpeed The DeepSpeed [13] Python library for distributed
training and inference supports PyTorch models that satisfy Deep-
Speed’s pipeline API: the model must be expressed as a list of layers
such that the forward pass is equivalent to a composition of each
layer’s forward pass. DeepSpeed provides a 1F1B schedule but does
not support custom schedules.

2.3 Pipeline Parallelism Libraries

PiPPy Pipeline Parallelism for PyTorch [6, 14] (PiPPy) automati-
cally partitions PyTorch models that have static computation graphs.

1class CLIP(nn.Module): e

def forward(image, text): Coordinator

14class CLIP(nn.Module):
image = encode_img(image) oot e|[15 def forward(image, text?:
16 ref@ = actors[@].fwd(image)

2

3 pipeline_stage(0)

4

5 rint(image.shape

6 P (imag pe) 17 print(ray.get(ref@).shape)
7

8

18
19 ref2 = actors[2].fwd(ref0,refl)

ipeline_stage(2
prp _stage(2) 20 return ref2

9 return image @ text.t()

=
10 model = piper_comp(model)
11 sched = [[...],[...1,[...]] Actor 0 Actor 1 Actor 2
12 ref = piper_exec(model,sched, img exi
13 [img,txt],labels,loss_fn)

Figure 3: PipER workflow. User inputs are on the left and the com-
piled distributed program is on the right.

Models whose data flow cannot be analyzed ahead of time (e.g.,
models with data-dependent control flow, external library calls, or
other untraceable operations) must be manually partitioned by the
user. This precludes a large number of PyTorch models, including
MOoE architectures, StableDiffusion and multi-modal models (see
Table 2). To use a custom execution schedule, the user must manu-
ally coordinate communication operations to respect the schedule’s
temporal dependencies and the pipeline’s data dependencies.

JaxPP JaxPP [16] automatically partitions models according to
pipeline stage annotations and coordinates user-defined execution
schedules. JaxPP’s support is limited to models written in the Jax
framework, which requires computations to be expressed as pure,
statically analyzable functions.

Pfeife Pfeife [4] provides automatic pipeline parallel support for
PyTorch models by intercepting the computation graphs generated
by TorchDynamo, similar to our system. Pfeife performs automatic
search over model partitions and schedule parameters, limited to
interleaved 1F1B schedules. Pfeife also interoperates with data par-
allelism. Pfeife supports models with static computation graphs, and
does not support all models with non-static computation graphs.

3 Design and Implementation

P1pER translates PyTorch models into distributed programs and
automatically executes them according to user-defined pipeline-
parallel execution schedules.

3.1 API

Figure 3 presents the user’s workflow pipelining CLIP (Contrastive
Language-Image Pre-training) [12], a multi-modal model that uses
image and language encoders to connect images and text with
contrastive learning. We split CLIP into three stages so that the
stage dependencies form a DAG like Figure 2b. To achieve the 3-
stage pipeline, the user adds pipeline_stage annotations on lines
3, 6, and 8 of Fig. 3. The user calls piper_comp (line 10) to compile
the annotated model and produce the distributed program on the
right side of Figure 3.

To define a custom execution schedule (line 11), the user builds
a 2-D array that resembles an execution schedule diagram, like the
diagrams in Figure 6. The entries in the schedule array must satisfy
(1) one row per stage and one column per time step, (2) None entries
represent pipeline bubbles, and (3) all other entries are tuples with
the stage ID, microbatch index, and type (forward or backward)

PipER: Towards Flexible Pipeline Parallelism for PyTorch

of a computation. To execute one iteration of the schedule, the
user calls piper_exec with the compiled model, schedule, inputs,
labels, and loss function (line 12). The result is a future, which is
a reference that will eventually point to the result of a training
iteration (training loss per microbatch). The result is distributed, so
it remains on the actors.

3.2 Compiler

Our compiler, piper_comp, extends TorchDynamo [1], a PyTorch
JIT compiler that works by tracing a model’s forward function to ex-
tract computation graphs of PyTorch operations. TorchDynamo en-
codes computation graphs as torch. fx graphs and compiles them
into optimized CPU or GPU kernels. “Graph breaks" occur when
TorchDynamo hits an untraceable operation (e.g., data-dependent
control flow, external library calls, or print statements). To han-
dle this, TorchDynamo uses a continuation-passing style to pause
execution when it reaches an untraceable operation, compile the
torch. fx graph accumulated up to that point, replace the orig-
inal code with a call into the compiled kernel, and then resume
execution at the untraceable operation. The continuation runs the
untraceable operation in eager-mode and then continues tracing
the code that follows to produce the next torch. fx graph. This de-
sign enables flexible graph capture that does not require the entire
model to be traceable.

PIPER intercepts each torch.fx graph before TorchDynamo
compiles it and instead sends it to be compiled and executed on a
remote device. PIPER also automatically sends the model parame-
ters used by the computation graph to the same remote device on
the first execution, to avoid repeatedly moving model parameters
between the controller and the workers. pipeline_stage anno-
tations force graph breaks in TorchDynamo so that each pipeline
stage has a non-overlapping sequence of computation graphs. PIPER
keeps track of which graphs belong to which stage to track the data
flow of the pipeline, for later use in piper_exec.

We use the Ray [8] distributed runtime as an RPC layer to man-
age distributed actors. The process running PIPER becomes the
distributed coordinator. PIPER executes torch.fx graphs as tasks
on remote actors by replacing the graph’s original code with an RPC
that runs the graph remotely (lines 16, 18 and 19 in Figure 3). Ray
tasks return distributed futures, which eventually point to a result
that remains on the actors. By operating on distributed futures, the
coordinator never materializes data from a remote device unless the
user reads the data (e.g., ray . get materializes the reference on line
17 because the user code called print). Thus, futures enable the
coordinator to run ahead of the distributed actors by dispatching
tasks asynchronously until there is a synchronization point on the
coordinator that fetches data.

TorchDynamo uses continuation-passing style to execute un-
traceable operations, like the print statement on line 5 of Figure
3, eagerly. In PIPER, these eager-mode operations that are not cap-
tured in a torch. fx graph are run on the coordinator (line 17). This
ensures that the code run on distributed devices consists of static
tensor operations, while the coordinator maintains a consistent
view of potentially dynamic or stateful untraceable Python code.

TorchDynamo’s continuation-passing style always runs a model’s
torch. fx graphs in succession. Naively applying this in PIPER can

PACMI ’25, October 13-16, 2025, Seoul, Republic of Korea

Framework|Model | 1F1B|GPipe
P1pER 5 29 14
PiPPy 13 70 51

Table 1: Lines of Llama code changed to achieve a 2-stage partition

and lines of code written to achieve 1F1B and GPipe execution sched-
ules.

Model PiPPy|Megatron-LM
Llama3 v v
ViT v v
Sparsely-gated MoE| X v
StableDiffusion X X
CLIP X X

Table 2: Models supported by PiPPy and Megatron-LM. PIPER aims
to support all of these models.

result in incorrect executions for schedules that interleave for-
wards and backwards across different microbatches. To achieve
interleaved execution, PIPER modifies the continuation function
call sites produced by TorchDynamo to return the arguments for
the next continuation instead of directly calling it, allowing PIPER
to schedule the continuations for each stage separately.

3.3 Distributed Execution

During compilation, PIPER records the data flow between pipeline
stages based on the traced torch. fx graphs. In piper_exec, PIPER
uses the data flow to route microbatches forward and backward
through the pipeline in order to execute a distributed training step.
PrpER orders forward and backward microbatches according to a
user-defined schedule. Before executing a schedule, PIPER checks
that it obeys the data dependencies of the model pipeline (e.g., Llama
stage 1 happens after stage 0, backward for stage 1 happens after
forward for stage 1, and backward for stage 0 happens after back-
ward for stage 1). Then, for each timestep, PIPER dispatches one task
per pipeline stage and microbatch according to the schedule. Each
task dispatch triggers a peer-to-peer communication between the
actors corresponding to the current and previous pipeline stages.

piper_exec also automatically handles gradient accumulation
and weight updates. Actors store a copy of the input and output
activations per microbatch and propagate the gradients of interme-
diate activations backward through the pipeline in the backward
pass. Each backward stage produces a partial gradient that must be
accumulated over all the microbatches. After the last microbatch
completes its final backward stage, PIPER dispatches a weight up-
date task on every actor to apply the accumulated partial gradients
to the model weights on each device.

By automatically coordinating communication operations be-
tween forward and backward stages across devices, PIPER frees
the user from writing distributed coordination code. To achieve a
different schedule, the user only needs to change the high-level
schedule array. This makes it easy for users to experiment with
different execution schedules in order to balance tradeoffs for their
model’s specific execution characteristics. PIPER currently has ex-
perimental support for virtual stages, necessary for the interleaved
1F1B schedule. We plan to add support for finer-grained schedul-
ing and overlapping communication with computation to support
schedules like ZeroBubble and DualPipe.

PACMI ’25, October 13-16, 2025, Seoul, Republic of Korea

2

@ 15000

[}

X

(=]

£ 10000 1

o

>

Q.

S 5000

g " Single

o BN GPipe Wmm 1F1B mmm Q20

<

[- T T T
Megatron PiPPy PiPPy Piper Piper

compiled eager compiled eager

Figure 4: Training throughput for Llama-3B with GPipe and 1F1B
execution schedules.

w
o
o
o

BN GPipe
I 1F1B

2000 1 Single
= Dpevice

X

Megatron

10004

Throughput (samples/s)

Piper Piper PiPPy PiPPy
compiled eager compiled eager

Figure 5: Training throughput for CLIP with GPipe- and 1F1B-like
execution schedules.

eru o [UEIHIE o123 | EEE o] 1 2 3|
(SRR 01213 [o]1]2]3] 01 [o Bl 1 2]]
GPU 2 UEEE o [1[2]3 IENAENZENEER

(a) Linear stage dependencies.

cpru o [o|1]2]3 01 o Pl 1 [2 3
cpru 1 (U 0o[1 |23
cruz | |l o [1 23

01 Lo 1 [2 3

N KR ENZENSE
(b) DAG stage dependencies.

Figure 6: GPipe- (left) and 1F1B-like (right) schedules for CLIP

expressed with (a) linear stage dependencies and (b) DAG stage de-

pendencies.

3.4 Performance Optimizations

The P1PER coordinator is responsible for directing activations and
gradients between distributed actors. Sending tensors through the
coordinator would increase communication latency compared to
sending tensors directly between distributed actors. Thus, we use
Ray futures to transfer tensors directly between distributed actors
using NVIDIA’s Collective Communication Library (NCCL), and
only materialize data on the coordinator if necessary (e.g., line 17
in Figure 3).

4 Evaluation

We compare PIPER with two state-of-the-art pipeline parallelism
frameworks, PiPPy and Megatron-LM, on two popular models,
Llama and CLIP.

Distribution Effort We divide Llama-3B into 2 stages (Figure
2a). Table 1 describes the user effort required to pipeline Llama
with P1pER and PiPPy. Megatron-LM is not included because it
does not support custom models. To achieve a 2-stage partition
in PIPER, we re-write the loop over transformer layers into two
loops that each run half of the transformer layers and we add a
pipeline_stage annotation between the loops. PiPPy’s manual
mode requires slightly more modifications to refactor the model in
order to optionally load and run layers depending on the stage.

—e— Ray NCCL transport
—m— torch.distributed NCCL transport

Time (ms)
N
o o
o o
o o

o
.
3
3

0 250 500 750 1000 1250 1500 1750 2000
Tensor size (MB)

—e— Baseline

1 —=— Print
—A— Data-dependent print

T T

20 25 30 35 40 45 5.0
Number of stages

Time (ms)
B w
o o

w
o

Figure 7: (Top) GPU-GPU tensor transfer time in Ray vs. PyTorch’s
distributed communication package. (Bottom) Running different
types of untraceable code on the coordinator between stages.

To achieve 1F1B and GPipe execution schedules, PIPER requires
writing 29 and 14 lines of code to produce methods, parameterized
over the number of microbatches and stages, that build 2-D sched-
ule arrays for 1F1B and GPipe, respectively. Achieving the same
schedules with PiPPy requires using torch.distributed opera-
tions to synchronize forward and backward stages according to the
schedule’s temporal dependencies and the pipeline’s data depen-
dencies. This requires more code and significant care to ensure that
distributed operations are synchronized correctly.

Training Throughput P1pER and PiPPy “compiled” run compiled
PyTorch code using the TorchInductor [1] backend for TorchDy-
namo. Figure 4 presents the Llama throughput results. PIPER has
slightly lower throughput than PiPPy in eager mode because Ray
NCCL tensor transfers incur a 3ms overhead compared to PyTorch’s
default NCCL tensor transfers, due to the Ray coordinator dynami-
cally dispatching send and receive RPCs to facilitate the transfer.
PIpER achieves slightly better throughput than PiPPy in compiled
mode, indicating that TorchDynamo interoperates favorably with
P1pER compared to PiPPy. PIPER achieves better throughput than
Megatron-LM without Megatron’s other parallelism dimensions
enabled (DP, TP, CP).

We evaluate CLIP training throughput using P1pER and PiPPy.
Megatron-LM does not support any non-transformer architectures,
so we do not include it. We partition CLIP into 3 stages (Figure
2b) and measure training throughput using the GPipe- and 1F1B-
like schedules in Figure 6. PIPER exploits CLIP’s dependency DAG
by scheduling stages 0 and 1 in parallel (Figure 6b). This reduces
pipeline bubbles compared to PiPPy, which can only express linear
stage dependencies (Figure 6a). Figure 5 presents throughput results.
PIPER achieves better throughput than PiPPy by reducing pipeline
bubbles. Compilation via TorchInductor further improves PIPER’s
throughput compared to PiPPy.

Scalability We evaluate the scalability of our centralized coordi-
nator distributed runtime. In Figure 7 (top) we measure GPU-GPU
tensor transfer time (using the NCCL backend) in Ray vs. PyTorch’s
native distributed communication package. Ray tensor transfer adds
roughly 3ms of overhead from dynamic dispatch. However, this
overhead remains constant with increasing tensor size. In future

PipER: Towards Flexible Pipeline Parallelism for PyTorch

work, we plan to explore fusing Ray RPCs ahead of time to reduce
this overhead.

In Figure 7 (bottom) we evaluate the cost of running untrace-
able code on the coordinator between stages. We measure forward
iteration time with (i) no computation, (ii) printing “hello world"
and (iii) printing the first value of the previous stage’s activation on
the coordinator between stages. We observe linear overhead from
the data-dependent operation due to materializing activations on
the coordinator between stages. The data-independent print does
not add measurable overhead because the operation is fast enough
to not delay the coordinator in dispatching the next stage’s RPC.
In future work, we plan to further evaluate how these overheads
translate to real-world PyTorch models.

Supported Models We evaluate whether PiPPy and Megatron-LM
support a set of popular PyTorch models and present our findings
in Table 2. Megatron-LM only has native support for transformer
models. It does not support popular models like StableDiffusion or
multi-modal models like CLIP. PiPPy only supports models with
linear pipeline dependencies, which precludes CLIP. PiPPy auto-
matically supports traceable models, precluding architectures like
MOoE (non-static computation graph) and StableDiffusion (external
library calls). It would require additional user effort to pipeline
these models with PiPPy. PIPER aims to support all the models in
Table 2 and more.

5 Discussion

P1pER decouples model and schedule specification from distributed
implementation by using torch. fx subgraphs as an intermediate
representation (IR) for PyTorch models. PyTorch and the PIPER
scheduling interface allow for flexible model and schedule specifi-
cation, respectively. The TorchDynamo compiler translates these
into a series of torch. fx subgraphs. Finally, PIPER distributes the
subgraphs using the Ray distributed runtime. We think that PIpER’s
design will enable further improvements to usability and flexibility
of pipeline-parallel support by enabling improvements to the com-
ponents above (compiler) and below (distributed runtime) the IR
independently of each other. Decoupling also enables portability
to other backends and frontends, e.g., alternative frontends that
produce torch. fx graphs or distributed runtimes other than Ray.

We plan to extend Piper to interoperate with additional paral-
lelism dimensions, including tensor, data and expert parallelism. We
believe the centralized coordinator design will adapt well to new
parallelism dimensions. For example, to support data parallelism,
we imagine replicating the PIPER coordinator n times for n-way DP,
and adding all-to-all gradient synchronization steps to the pipeline
schedule before weight updates.

6 Conclusion

We designed and prototyped PIPER, a compiler that applies pipeline
parallelism to arbitrary PyTorch models. PIPER automatically par-
titions arbitrary PyTorch models and coordinates user-defined
pipeline-parallel execution schedules. We demonstrate competitive
preliminary performance with existing state-of-the-art pipeline
parallelism frameworks while aiming to support a wider range of
PyTorch models and execution schedules. We plan to build out

PACMI ’25, October 13-16, 2025, Seoul, Republic of Korea

our prototype to support all the models in Table 2 and more, as
well as more pipeline-parallel execution schedules (e.g., ZeroBubble
and DualPipe). We also plan to explore interoperability with other
parallelism strategies (e.g., data and tensor parallelism) and ML
frameworks (e.g., Megatron-LM and DeepSpeed).

References

[1] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael

Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan,

Anjali Chourdia, Will Constable, Alban Desmaison, Zachary DeVito, Elias Ellison,

Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej

Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang, Jason

Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan, Christian Puhrsch, Matthias

Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Shunting Zhang, Michael

Suo, Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou, Richard Zou, Xiaodong Wang,

Ajit Mathews, William Wen, Gregory Chanan, Peng Wu, and Soumith Chintala.

Pytorch 2: Faster machine learning through dynamic python bytecode trans-

formation and graph compilation. In Proceedings of the 29th ACM International

Conference on Architectural Support for Programming Languages and Operating

Systems, Volume 2, 2024.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu,

Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,

Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun

Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,

Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian

Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi

Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie

Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin

Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong

Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang,

Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang,

Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruigi

Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi

Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,

Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping

Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L.

Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun

Gao, Wengqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi,

Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang,

Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu,

Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu

Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X.

Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao,

Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi,

Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang

Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang,

Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting

Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z.F. Wu, Z. Z. Ren,

Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda

Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan,

Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu,

Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.

Deepseek-v3 technical report, 2025.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao

Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng

Chen. Gpipe: efficient training of giant neural networks using pipeline parallelism.

In Proceedings of the 33rd International Conference on Neural Information Processing

Systems, 2019.

Ho Young Jhoo, Chung-Kil Hur, and Nuno P. Lopes. Pfeife: Automatic pipeline

parallelism for pytorch. In Forty-second International Conference on Machine

Learning, 2025.

[5] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng
Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith
Chintala. Pytorch distributed: experiences on accelerating data parallel training.
Proceedings of the VLDB Endowment, 13(12), 2020.

[6] Wanchao Liang, Tianyu Liu, Less Wright, Will Constable, Andrew Gu, Chien-
Chin Huang, Iris Zhang, Wei Feng, Howard Huang, Junjie Wang, Sanket Puran-
dare, Gokul Nadathur, and Stratos Idreos. Torchtitan: One-stop pytorch native
solution for production ready LLM pretraining. In The Thirteenth International
Conference on Learning Representations, 2025.

[7] Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise trans-

formers for near-infinite context. arXiv preprint arXiv:2310.01889, 2023.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard

Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,

and Jon Stoica. Ray: A distributed framework for emerging Al applications. In

—
o)

3

4

=

=

PACMI ’25, October 13-16, 2025, Seoul, Republic of Korea

13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), Carlsbad, CA, 2018. USENIX Association.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream:
Generalized pipeline parallelism for dnn training. In Proceedings of the 27th ACM
symposium on operating systems principles, pages 1-15, 2019.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia. Effi-
cient large-scale language model training on gpu clusters using megatron-lm.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC *21, New York, NY, USA, 2021. Association
for Computing Machinery.

Penghui Qi, Xinyi Wan, Guangxing Huang, and Min Lin. Zero bubble pipeline
parallelism, 2023.

[12] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from
natural language supervision. In International Conference on Machine Learning,
2021.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero:
Memory optimization towards training A trillion parameter models. CoRR,
abs/1910.02054, 2019.

[14] James Reed, Pavel Belevich, Ke Wen, Howard Huang, and Will Constable. Pippy:

Pipeline parallelism for pytorch. https://github.com/pytorch/PiPPy, 2022.
Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language
models using model parallelism. CoRR, 2019.

Anxhelo Xhebraj, Sean Lee, Hanfeng Chen, and Vinod Grover. Scaling deep
learning training with MPMD pipeline parallelism. In Eighth Conference on
Machine Learning and Systems, 2025.

https://github.com/pytorch/PiPPy

	Abstract
	1 Introduction
	2 Related Work
	2.1 Pipeline-Parallel Execution Schedules
	2.2 Training Frameworks
	2.3 Pipeline Parallelism Libraries

	3 Design and Implementation
	3.1 API
	3.2 Compiler
	3.3 Distributed Execution
	3.4 Performance Optimizations

	4 Evaluation
	5 Discussion
	6 Conclusion
	References

